69,111 research outputs found

    Critical view of the claimed Θ+\Theta^+ pentaquark

    Full text link
    We use a theoretical model of the γ d→ K+K− n p\gamma ~d \to ~K^+ K^- ~n ~p reaction adapted to the experiment done at LEPS where a peak was observed and associated to the Θ+(1540)\Theta^{+}(1540) pentaquark. The study shows that the method used in the experiment to associate momenta to the undetected proton and neutron, together with the chosen cuts, necessarily creates an artificial broad peak in the assumed K+nK^+ n invariant mass in the region of the claimed Θ+(1540)\Theta^{+}(1540). It is shown that the LEPS fit to the data, used to make the claim of the Θ+(1540)\Theta^{+}(1540), grossly distorts the background. An alternative fit, assuming a background plus a fluctuation, returns a background practically equal to the theoretical one and a fluctuation identical to the one seen in the experimental K−pK^- p spectrum of 2σ\sigma significance.Comment: Conference Proceedin

    Study of the γd→K+K−np\gamma d\to K^{+}K^{-}np reaction and an alternative explanation for the "Θ+(1540)\Theta^{+}(1540) pentaquark" peak

    Full text link
    We present a calculation of the γd→K+K−np\gamma d \to K^+ K^- n p reaction with the aim of seeing if the experimental peak observed in the K+nK^+ n invariant mass around 1526 MeV, from where evidence for the existence of the Θ+\Theta^+ has been claimed, can be obtained without this resonance as a consequence of the particular dynamics of the process and the cuts applied in the experimental set up. We find that a combination of facts leads indeed to a peak around 1530 MeV for the invariant mass of K+nK^+ n without the need to invoke any new resonance around this energy. This, together with statistical fluctuations that we prove to be large with the statistics of the experiment, is likely to produce the narrower peak observed there.Comment: published versio
    • …
    corecore