46,858 research outputs found

    A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859

    Full text link
    XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitional pulsar PSR J1023+0038. While the surface magnetic field of a typical NS in a LMXB is lower by more than four orders of magnitude than the much more intense fields of neutron stars accompanying high-mass binaries, the radius at which the matter in-flow is truncated in a NS-LMXB system is much lower. The magnetic field at the magnetospheric interface is then orders of magnitude larger at this interface, and as consequence, so is the power to accelerate electrons. We demonstrate that the cooling of the accelerated electron population takes place mainly through synchrotron interaction with the magnetic field permeating the interface, and through inverse Compton losses due to the interaction between the electrons and the synchrotron photons they emit. We found that self-synchrotron Compton processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References update

    A 3D Printed Toolbox for Opto-Mechanical Components

    Get PDF
    Nowadays is very common to find headlines in the media where it is stated that 3D printing is a technology called to change our lives in the near future. For many authors, we are living in times of a third industrial revolution. Howerver, we are currently in a stage of development where the use of 3D printing is advantageous over other manufacturing technologies only in rare scenarios. Fortunately, scientific research is one of them. Here we present the development of a set of opto-mechanical components that can be built easily using a 3D printer based on Fused Filament Fabrication (FFF) and parts that can be found on any hardware store. The components of the set presented here are highly customizable, low-cost, require a short time to be fabricated and offer a performance that compares favorably with respect to low-end commercial alternatives.Comment: 9 pages, 9 figure

    Precision radiative corrections to the Dalitz plot of baryon semileptonic decays including the spin-momentum correlation of the decaying baryon and the emitted charged lepton

    Full text link
    We calculate the radiative corrections to the angular correlation between the polarization of the decaying baryon and the direction of the emitted charged lepton in the semileptonic decays of spin one-half baryons to order (\alpha/\pi)(q/M_1). The final results are presented, first, with the triple integration of the bremsstrahlung photon ready to be performed numerically and, second, in an analytical form. A third presentation of our results in the form of numerical arrays of coefficients to be multiplied on the quadratic products of form factors is discussed. This latter may be the most practical one to use in Monte Carlo simulations. A series of crosschecks is performed. The results are useful in the analysis of the Dalitz plot of precision experiments involving light and heavy quarks and is not compromised to fixing the form factors at predetermined values. It is assumed that the real photons are kinematically discriminated. Otherwise, our results have a general model-independent applicability.Comment: 8 pages, RevTex4, 5 tables, no figures. Shortened version; results and conclusions remain unchange

    How does breakup influence the total fusion of 6,7^{6,7}Li at the Coulomb barrier?

    Full text link
    Total (complete + incomplete) fusion excitation functions of 6,7^{6,7}Li on 59^{59}Co and 209^{209}Bi targets around the Coulomb barrier are obtained using a new continuum discretized coupled channel (CDCC) method of calculating fusion. The relative importance of breakup and bound-state structure effects on total fusion is particularly investigated. The effect of breakup on fusion can be observed in the total fusion excitation function. The breakup enhances the total fusion at energies just around the barrier, whereas it hardly affects the total fusion at energies well above the barrier. The difference between the experimental total fusion cross sections for 6,7^{6,7}Li on 59^{59}Co is notably caused by breakup, but this is not the case for the 209^{209}Bi target.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.

    Precision radiative corrections to the semileptonic Dalitz plot with angular correlation between polarized decaying and emitted baryons: Effects of the four-body region

    Get PDF
    Analytical radiative corrections of order (\alpha/\pi)(q/M_1) are calculated for the four-body region of the Dalitz plot of baryon semileptonic decays when the s_1 \cdot p_2 correlation is present. Once the final result is available, it is possible to exhibit it in terms of the corresponding final result of the three-body region following a set of simple changes in the latter. We cover two cases, a charged and a neutral polarized decaying baryon.Comment: Revtex4, 7 pages, no figure
    • …
    corecore