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SUMMARY 
 

In response to recent requirements in food regulations, new procedures are now necessary 
to evaluate the impact of the variability in the parameters of food engineering models used for 
decisions of safe processing, packaging, storage and distribution conditions. The variability of 
these parameters generates an uncertainty in the estimations of product safety and quality 
submitted by food processors to regulatory agencies. Also, consumers and processors want to 
know the time that products will retain the quality desired and safety expected. This type of 
problems depends on many factors often described by statistical distributions requiring non-
deterministic calculations such as Monte Carlo procedures. A combined predictive microbiology 
and Monte Carlo procedure were used to determine the shelf-life uncertainty and thus reduce the 
risk of reaching consumers with unsafe or spoiled products. These benefits are not possible to 
identify when using conventional estimation methods of shelf-life. 

 
The high probability that thermal processing protocols determined using average values 

for the parameters in the model are not safe was confirmed. That is why, in the commercial 
sterilization and pasteurization of foods, it will be required to provide regulatory agencies with 
determinations of the confidence level that the pathogen risk has been reduced to an acceptable 
probability level. This can be achieved using the Monte Carlo methodology described in this 
work. Estimations of the reduction in process time achievable by lowering the statistical 
variability of process design parameters are also demonstrated. Practical applications of the 
methodologies here shown are presented including approaches to reduce the variability of input 
parameters to minimize the uncertainty of thermal processing times. This uncertainty reduction 
results in more moderate thermal treatments with clear benefits for both processors and 
consumers. 
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INTRODUCTION 
 

Monte Carlo procedures can be used 
to evaluate the uncertainty of food safety 
and quality estimates associated with the 
variability in model parameters. This non-
deterministic approach will satisfy new 
international food regulations. In a Monte 
Carlo procedure (Cassin et al. 1998), model 
parameters can be described as probability 
distributions and approximated by random 
number generators (Fig 1). Calculations are 
repeated many times yielding each time 
slightly different outcomes (Schmidheiny 
2008) based on the variability of the input 
data. In conventional calculations, the input 
parameters have a certain value and the 
same output values are always obtained. The 
output from Monte Carlo procedures can be represented as probability distributions or 
histograms and the conclusion reported as confidence intervals (Wittwer 2004). In this work, two 
applications are presented in some detail (Chotyakul 2009; Chotyakul et al. 2010a,b), i.e., the 
assessment of the uncertainty of refrigerated microbial shelf-life and thermal processing 
estimates. 
 
 

APPLICATION: MICROBIAL SHELF-LIFE ESTIMATES 
 

Shelf-life as affected by storage temperature, water activity, and modified atmosphere 
packaging was analyzed based on meat spoilage by Lactobacillus sakei, a gram-positive 
anaerobe commonly found in meat and fish products (Martín et al. 2006). Some strains produce 
exopolysaccharides yielding a slimy appearance (Champomier-Vergès et al. 2001). Longer shelf-
life is achieved when carbon dioxide is used (Devlieghere and Debevere 2000; Devlieghere et al. 
1998; McMillin 2008). When absorbed by the meat, pH decreases and oxidation is inhibited 
slowing down deterioration (Aymerich et al. 2006; Jakobsen and Bertelsen 2002). In this work, 
storage temperature T was assumed fixed (4C). Water activity (aw) can be measured with small 
variability (±0.003, Anonymous 2006) and the value assumed was 0.98 (Rödel 2001). The 
dissolved carbon dioxide (CO2) concentration in the meat was the value reported by Jakobsen 
and Bertelsen (2002; 2004) for chopped pork (2650 ppm). Shelf-life was defined as lag phase 
(), i.e., the time when cell numbers remain relatively constant, plus the exponential growth time 
ts needed to reach, at rate max, a microbial load Ns from an initial contamination level No.  
 

The equations used (Table 1) and the parameter values required (Table 2) generated four 
cases depending on the factor(s) (T, aw, CO2) considered in the shelf-life model. The expressions 
used for  and max in Table 1 are modifications of the ones proposed by Ratkowsky et al. (1982) 
with parameter values reported in Table 2. Shelf-life was determined considering only storage 
temperature T, T and aw, T and dissolved carbon dioxide CO2, and T, CO2 & aw (Cases 1-4.1). 

Figure 1. Schematic representation of a Monte Carlo and a 
conventional calculation procedure 
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Table 1. Equations used in the shelf-life models 

Case  (h)  max (h
-1) 

a. Models used with reported standard deviation (SD) (Devlieghere et al. 1999; McKellar and Lu 2004) 

Case 1 (T) 
  

Case 2 (T, aw) 
  

Case 3 (T, CO2) 
  

b. Model used with reported and lowered SD values (Devlieghere et al. 1999) 

Case 4 (T, aw, CO2) 

  

4.1 Mean and SD for all parameters as reported in the literature 

4.2-4.5 
Reported mean and 10, 50, and 90% lower SD for a w min (Case 4.2) Tmin (Case 4.3) 
(b4 , b5) (Case 4.4) and CO2 max (Case 4.5) 

4.6 Reported mean and 10, 50, and 90% lower SD for all parameters 

4.7 Reported mean and 10, 50, and 90% lower SD for the microbial load 

 

Table 2. Parameters for the predicted microbiology models 
(McKellar and Lu 2004), (Devlieghere et al. 1999), (Martín et al. 2006) 

Case Parameter  (h) Parameter  max (h
-1) 

1 
b1 
Tmin 

0.0207±0.0008 
-2.93±1.27 

b1 
Tmin 

0.0207±0.0008 
-2.93±1.27 

2 
b2 
aw min 
Tmin 

0.012±0.0012 
0.9469±0.00087 
-2.31±0.3087 

b3 
aw min 
Tmin 

0.0141±0.0018 
0.9561±0.00107 
-8.1±1.0714 

3 
b4 
CO2 max 
Tmin 

9.3±1.96E-07 
1.4±0.26E04 
-2.38±0.291 

b5 
CO2 max 
Tmin 

25±3.57E-07 
6.1±0.586E03 
-9.0±0.893 

4 

b4 
aw min 
CO2 max 
Tmin 

9.3±1.96E-07 
0.947±0.00077 
1.4±0.26E04 
-2.38±0.2908 

b5 
aw min 
CO2 max 
Tmin 

25±3.57E-07 
0.9560±0.00082 
6.1±0.587E04 
-9.0±0.8928 

Log No = 3.40  0.34; T = 4 ºC, aw = 0.98, CO2 = 2650 ppm 

2
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Figure 2 summarizes all calculation procedures and highlights the key decisions made by 
the commercial food processor: (1) microorganism(s) causing spoilage and initial microbial load 
No; (2) microbial load level Ns associated with spoilage at the end of shelf-life; and, (3) level of 
acceptable risk that the shelf-life may be shorter than claimed on the label. The first step in the 
evaluation of microbial shelf-life is determining the initial microbial load. Lognormal values 
were used for L. sakei, i.e., 3.40±0.34 log CFU/g (Martín et al. 2006) and normal distributions 
for all other parameters (Table 2). With no repetition, each of the generated initial load and 
model parameter values were used to obtain 300 values for  and max. The comparison of the 
reported mean and standard deviation (SD) with the ones calculated for the generated values 
showed an excellent agreement confirming the distributions assumed (data not reported). Shelf-
values were then calculated for each  and max using log Ns = 6 as the end point (Gram et al. 
2002). The 300 values obtained for each parameter were compared with the single value 
obtained when using only the parameter mean value calculations (from reported references cited 
in table 2). The probability distribution of the meat shelf-life can also be described in histograms 
and used to quantify the shelf-life uncertainty as mean and SD (Table 3). The very short shelf-
life predicted by the T-only model (Case 1, 3.9±1.7 h) confirmed that the meat aw and/or CO2 

effects cannot be ignored. An expected shift to longer shelf-life by including the effect of aw 
and/or CO2 was confirmed.  
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Figure 2. Monte Carlo calculation procedure including information to be provided by the food processor 



The large shelf-life uncertainty observed in the deterministic model was not predictable 
highlighting the advantages of the Monte Carlo procedure here proposed (Table 3). This large 
uncertainty explains the reluctance of food processor to provide shelf-life information to 
consumers. The predicted shelf-life uncertainty was lower when the model considered only one 
(Case 1) but increased significantly when the model included two (Case 2 and 3) or three factors 
(Case 4.1). Considering the large shelf-life uncertainty, particularly when considering several 
preservation factors, the recommendation to a food processor is to use a value equal or less than 
95% of the histogram shelf-life values (n = 300 used in this study). Following this strategy, the 
recommended shelf-life would be 2.5, 100, 3, and 110 h for Cases 1-4.1, respectively (Table 3). 
 

Table 3. Estimates of refrigerated microbial shelf-life for meat (h) 

Case 
Mean-value 
calculation 

Calculations based on Monte Carlo simulations 
Mean ± standard deviation / [Shelf life estimate, 95% confidence] 

1 3.6 3.9±1.7 / [2.5] 

2 115.9 119.3±17.4 / [100] 

3 4.1 4.6±1.4 / [3] 

4.1 144.8 160.4±40.3 /[110] 

  

% lowering of the SD for the corresponding parameter  

Parameter 10 50 90 

4.2  aw min 160.4±40.0 / [110] 160.4±40.2 / [110] 160.3±40.0 / [110] 

4.3  Tmin 158.3±38.8 / [110] 158.6±38.9 / [110] 157.6±37.4 / [110] 

4.4  b4, b5 160.7±39.0 / [110] 157.3±32.4 / [115] 154.6±29.7 / [120] 

4.5  CO2 max 159.4±38.3 / [110] 155.4±29.4 / [115] 153.6±27.3 / [120] 

4.6  all 157.1±33.6 / [115] 149.2±17.9 / [125] 146.1±10.5/ [130] 

 
% lowering of the SD for the initial microbial load  

 10 50 90 

4.7  Log No 158.4±39.0 / [110] 159.1±38.8 / [110] 159.2±38.6 / [115] 

The influence of parameter variability on the uncertainty of shelf-life estimates for Case 
4.1 (160.4±40.3 h) was studied systematically using the same parameter means but with SD 
lowered by 10, 50, and 90% (Table 3). Lowering the SD for the parameter aw min by 10, 50, and 
90% resulted in a negligible uncertainty reduction (160.4±40.0, 160.4±40.2, and 160.3±40.0 h, 
respectively). Lowering the SD for the parameter Tmin had a moderate effect and the equivalent 
values were 158.3±38.8, 158.6±38.9, and 157.6±37.4 h. Lowering the SD for the parameters b4 
and b5 lowered uncertainty more significantly yielding 160.7±39.0, 157.3±32.4, and 154.6±29.7 
h, respectively. A similar effect was observed when lowering the SD for CO2 max yielding 
159.4±38.3, 155.4±29.4, and 153.6±27.3 h, respectively. Lowering simultaneously the SD of all 



parameters by 10, 50, and 90% yielded shelf-life of 157.1±33.6, 149.2±17.9, and 146.1±10.5 h, 
respectively, i.e., a much larger reduction in the estimation uncertainty. Finally, the low 
uncertainty in the shelf-life estimate for Case 1 (T as the only factor) suggested that the larger 
uncertainty for Cases 2-4.6 was not due to the initial microbial load variability but due to the 
variability in the model parameters. This was confirmed by examining the effect of lowering the 
microbial load SD by 10, 50, and 90% yielding only a small change from 110 to 115 h in the 
recommended shelf-life only when the standard deviation was lowered by 90% (Case 4.7).  

In conclusion, Monte Carlo procedures are an effective tool to reduce the risk of offering 
consumers unsafe or spoiled products and allow the exploration for the cause of the uncertainty 
sources of shelf-life estimates. 

 
 

APPLICATION: UNCERTAINTY OF THERMAL PROCESSING ESTIMATES 
 

Presence of Clostridium botulinum spores in low-acid canned foods is a threat to public 
health and they must be inactivated. The time/temperature combination required to inactivate this 
and other pathogens must be minimized for product cost and quality reasons (Peck 2006). 
However, bacterial spores causing spoilage are more heat resistant than those associated with 
pathogens, and thus calculations are often based on minimizing product spoilage instead of 
meeting safety risk requirements. In both cases, pathogen or spoilage risk elimination, the 
calculations begins with the estimation of a processing time at a reference temperature T (FT 
value) to achieve a desired number of decimal reductions (SV) using the decimal reduction time 
(DT) required for inactivation of 90% of the target microorganism (Morales-Blancas and Torres 

 

Safety objective: N = 10-9

(1 in 1 billion containers) 

Safety objective: 12D 

12D 

12D 

Low No 

High No 

Safety objective: N = 10-9

(with 95% confidence) 

SV 

SV 

Low No 

High No 

DT distribution 

No distribution 

N = 10-9 N = 10-9  
with 95% confidence

(a) (b) (c) 

Figure 3. Design of thermal processes. (a) Original objective required the same 12 decimal reduction for all 
products no matter their initial load; (b) Definition of a process endpoint of 1 spore survival in 1 billion 

containers encouraged reduction of the initial microbial load; (c) Consideration of the statistical variability 
in process parameters ensures that food safety is achieved with high statistical confidence. 



2003a; b; c). Initially, it was required that the minimum process time for low-acid foods be at 
least sufficient to reduce C. botulinum spores by 12 logarithmic cycles (Guldas et al. 2008). This 
approach did not consider the initial pathogen load (Fig 3a) and thus the 12D concept evolved 
into setting the survival probability N (Fig 3b) at 1 in 109 containers or less (Toledo 2007). 
Setting a fixed endpoint encourages a reduction in the initial contamination level (No) as it results 
in a milder process. In addition to cost savings for producers, consumers have benefitted from a 
higher retention of nutrients and sensory in the final product. More recently (Fig 3c), regulatory 
agencies have begun to require that the processor considers the variability of the parameters 
involved in calculations (Stewart et al. 2002) which can be done using a Monte Carlo procedure.  

 
The details of the Monte Carlo procedure to determine the uncertainty of a thermal 

process highlighting key decisions by the commercial food processor can be obtained from the 
corresponding authors (Fig 4). In the application example used in this study for a thermal process 
at 110C (a temperature chosen based on the availability of published data), the processor must 
provide (values in parenthesis are the ones used in this study): (1) a thermal process target (C. 
botulinum Type B spores); (2) a safety objective expressed as the probability of finding the target 
microorganism in the product (1 in 109 mushroom cans); and, (3) an acceptable risk level that the 
actual probability be higher than the specified value (5%). 

The calculation process begins with a random number procedure to generate values for 
No and DT assuming lognormal and normal statistical distributions, respectively. The size of each 
generated dataset was equal to the number of samples used to determine the reported No and DT 

Figure 4. Monte Carlo procedure thermal process including information to be provided by the food processor



values. An important next step, before accepting and using generated data, is to define a metric 
to identify unacceptable datasets (Chu 2009) based on an acceptable error (in this study, 0.1 min 
for both DT and FT expressions) which can be done as follows: 
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These acceptable error functions are then used to define a metric determining if the 
distribution of generated data was similar to the distribution of the data reported in the literature. 
The metric used based on normalized errors in the mean, minimum and maximum value for No 
and DT values was defined as follows: 
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where (µo, ao, zo) and (µ*
o, a*

o, z*
o) are the mean, minimum, and maximum values for the 

reported and generated datasets, respectively, while fi are subjective importance weight factors. 
The fi values used in this study for the mean (1), minimum (0.5), and maximum (2) value gave 
more importance to the latter. Next, Eq (1) and acceptable errors () for No and DT as determined 
by Eqs (5 & 7), respectively, were used to determine acceptable metric values.  

An initial C. botulinum Type B spore load was referred to a typical canned mushroom 
product size (113.4 g = 4 oz). Based on the spore load information reported by Notermans et al. 
(1989), the mean and standard deviation values for log No used in this study were -1.36 ± 0.87 
with minimum -2.83 and maximum 0.08 log spores/container. Using DT values reported by 
Odlaug et al. (1978) yielded the following metric inequalities: 

 2.3930 
oNmetric

 (11)



 45.00
110


 CTDmetric

 (12)

These steps were followed to generate No
* and DT

* datasets satisfying the metric. The minimum, 
mean and maximum number of repetitions needed to find acceptable datasets required to 
generate 500 approved datasets was 1, 1.98, and 6 for No values and 1, 1.3 and 4 for D110C 
values, respectively. These low values suggest that the assumption of lognormal and normal 
distribution for these two parameters respectively, was correct (Pereira 2009). However, the 
metric test is a necessary but not sufficient test to validate the assumed distribution form for each 
parameter. Only acceptable generated datasets for No

* (12 values each) and DT
* (9 values each) 

were used in Monte Carlo simulations. A thermal process calculated using published mean 
values (Eq.11) and the 500 generated datasets as input parameters were used to generate log N* 
distributions (9x12 = 108 values) (Eq.12) as in the example shown (Fig 5a). 

 
 
 
 

 
A Monte Carlo analysis disadvantage 

is that many simulations are needed to achieve 
an acceptable accuracy level (Floschet et al. 
2003). An underprocessing % value was 
estimated for each unique combination of the 
500 No

* and DT
* datasets to determine a 

recommended number of generated datasets. 
The coefficient of variation (CV, Eqs 13-14) 
for s = 2, 3…, S = 500 underprocessing % 
values (Almonacid-Merino and Torres 2010) 
decreased rapidly until reaching s = 100 (Fig 
6) and was the dataset size used. 
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Figure 6. Recommended number of simulations 
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Figure 5. Frequency distribution for C. botulinum spore survival (log N*, CFU/container) for one generated 
N*

o and D*
110C dataset. (a) Thermal process (F110C = 5.96 min) based on the reported No and D110C means 

meeting the process target (N = 10-9 spores/container) with 45% confidence; (b) Thermal process time 
increased (F110C = 8.89 min) to meet process target (N = 10-9 spores/container) with 95% confidence. 

 

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500 

Number of datasets 

Coefficient of variation

Standard deviation 

S
ta

nd
ar

d 
de

vi
a
tio

n 
or

 C
o
ef

fic
ie

nt
 o

f v
ar

ia
tio

n 



 





Sn

i

i
S S

x

1

*
*

 
(13)

 
  2

1

1

2
**











 
 





Sn

i

Si

S

x
CV



 

(14)

 
Determination of a process time considering parameter variability 

During industrial food production, process parameters such as microbial loads are highly 
variable (Corradini et al. 2001). In addition, the benefits of efforts to lower the variability of the 
thermal inactivation parameters obtained in laboratory experiments must be assessed. 
Knowledge of the variability of generated No

* and DT
* values was used to estimate a thermal 

process time required (Fr) to reach 10-9 spores/container with a 95% confidence. The same 
dataset selected previously as an example was used to demonstrate that increasing thermal 
processing time from 5.96 min to 8.89 min increased the probability of meeting the spore load 
target from 45 to 95% (Fig 4). The same process repeated for 100 generated datasets as 
recommended to obtain reliable results, yielded a frequency distribution of thermal processing 
times meeting the desired inactivation of bacterial spores. This resulted in 9.6 min as the 
recommended processing time yielding the desired inactivation level with 95% confidence (Fig 
7a, Table 4). 
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Figure 7. Effect of lowering the standard deviation (SD) of the calculation parameters by 10, 50 and 90% 
on the frequency distribution of the processing time required to meet with 95% confidence the desired 

inactivation level, i.e., 10-9 spores/container. (a) Based on the original SD for No and DT; (b) Lowering the 
SD for No (c) Lowering the SD for DT; (d) Lowering the SD for both No and DT. 



Benefits of reducing parameter variability in thermal process estimations 
Considering parameter variability in food process calculations as required by the new 

public health regulations will increase the degradation of nutrients and product quality. 
Processors will have to find means to lower process time as much as possible. An approach 
explored in this study was to assess the impact of efforts to lower the variability in No and DT 
values (Table 4).  
 

Lowering the SD of No, D110C, and of both simultaneously by 10, 50, and 90% resulted in 
tighter distributions of thermal process times to reach the desired inactivation level (Fig 7) and 
thus shorter processing time (Table 4). The recommended thermal process time yielding a safe 
process with 95% confidence was 9.6 min before lowering variability. The effect of lowering the 
SD for No by 10, 50, and 90% resulted in recommended processes of 9.2, 8.8, and 8.6 min, 
respectively, while lowering the SD for DT values the equivalent values would be 9.4, 8.6, and 
8.2 min. Lowering the SD for both No and DT yielded a 95% confidence process of 8.6, 7.8, and 
6.4 min, respectively. The latter value (6.4 min) is not very different from the value calculated 
based on reported mean values and resulting in a 55% risk of under processing (5.96 min).  

Table 4. Effect of the prevalence of Clostridium botulinum (No) Type B spores(1) 
and their decimal reduction time(2) (D110C) on the thermal processing time for canned 
mushrooms required to reach the desired inactivation level (10-9 spores/container). 
Calculations based on the recommended number of 100 generated datasets. 

(a) Standard deviation reduction (mean  SD) 

Parameter 0% 10% 50% 90% 

log No -1.36  0.87(1) -1.36  0.78 -1.36  0.44 -1.36  0.09 

DT 0.78  0.17(2) 0.78  0.153 0.78  0.085 0.78  0.017 

(b) Process time to produce safe food with > 95% confidence (min) 

log No 

9.6 

9.2 8.8 8.6 

DT 9.4 8.6 8.2 

Both  8.6 7.8 6.4 

(1) Notermans and others (1989); (2) Odlaug and others (1978) 

 
 

CONCLUSIONS 
 

The estimation procedures presented in this work focused on the uncertainty of shelf-life 
and thermal process time estimations emphasized the importance of minimizing the variability of 
the input parameters used. Variability represents either an imperfect knowledge of the parameter 
value which can be reduced by improved measurements, or the true heterogeneity of the 
population that is a consequence of the physical system (Akterian et al. 1999; Nauta 2000; 2002). 
If the sources of the variability are the measurements, it can be lowered by technical training, 



improvement of analytical methods, and changes to the experimental design used to obtain them 
(e.g., additional replications). If the variability source is population heterogeneity, it is 
irreducible by measurement improvements and thus the source of this heterogeneity must be 
found.  

 
Knowing and reducing the source of product heterogeneity would have practical 

applications. For example, large processors work with many suppliers and thus a large 
heterogeneity in raw materials can be expected. The heterogeneity reflects differences in the 
production, storage, and transport conditions of raw materials. While those failing to meet the 
processor specification will be rejected, the remaining raw materials can be segregated into 
“excellent”, “acceptable,” and “needs attention” groups. If the specification is the microbial load, 
products with different contamination levels should be processed differently. In the case of shelf-
life, the resulting product could be labeled with different product expiration dates. If the raw 
materials are thermally processed, this would allow reducing processing time because higher 
quality supplies will have lower initial microbial load mean (No) and all groups will have a lower 
SD. 

 
In the case of the data on decimal reduction time (DT), large SD values could result from 

the aggregation of experimental determinations for other similar products. The recommendation 
could be to determine this parameter in the specific product to be thermally processed. Since this 
recommendation would generate costs to the processor, it is important to evaluate the impact on 
the recommended thermal process time achieved by reducing process uncertainty and variability. 
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