13 research outputs found

    Correlations between peripheral parasite load and common clinical and laboratory alterations in dogs with visceral leishmaniasis

    Get PDF
    Intensity of peripheral parasite infection has an important role in the transmission of Leishmania spp. from one host to another. As parasite load quantification is still an expensive procedure to be used routinely in epidemiological surveillance, the use of surrogate predictors may be an important asset in the identification of dogs with high transmitting ability. The present study examined whether common clinical and laboratory alterations can serve as predictors of peripheral parasitism in dogs naturally infected with Leishmania spp. Thirty-seven dogs were examined in order to establish correlations between parasite load (PL) in multiple peripheral tissues and common clinical and laboratory findings in canine visceral leishmaniasis (CVL). Quantitative polymerase chain reaction was employed to determine PL in conjunctival swabs, ear skin, peripheral blood and buffy coat. Additionally, a series of hematological, biochemical and oxidative stress markers were quantified. Correlations between net peripheral infection and severity of clinical alterations and variation in laboratory parameters were assessed through a new analytical approach, namely Compressed Parasite Load Data (CPLD), which uses dimension reduction techniques from multivariate statistics to summarize PL across tissues into a single variable. The analysis revealed that elevation in PL is positively correlated with severity of clinical sings commonly observed in CVL, such as skin lesions, ophthalmic alterations, onycogriphosis, popliteal lymphadenomegaly and low body mass. Furthermore, increase in PL was found to be followed by intensification of non-regenerative anemia, neutrophilia, eosinopenia, hepatic injury and oxidative imbalance. These results suggest that routinely used clinical and laboratory exams can be predictive of intensity of peripheral parasite infection, which has an important implication in the identification of dogs with high transmitting ability

    Dog skin parasite load, TLR-2, IL-10 and TNF-α expression and infectiousness

    Get PDF
    Visceral leishmaniosis is a zoonotic disease that is transmitted by Lutzomyia longipalpis sandflies. Dogs are the main peri-urban reservoir of the disease, and progression of canine leishmaniosis is dependent on the type of immune response elaborated against the parasite. Type 1 immunity is characterized by effective cellular response, with production of pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α). In contrast, Type 2 immunity is predominantly humoral, associated with progression of the disease and mediated by anti-inflammatory cytokines such as interleukin 10 (IL-10). Although seemly important in the dynamics of leishmaniosis, other gene products such as toll-like receptor 2 (TRL-2) and inducible nitric oxide synthase (iNOS) exert unclear roles in the determination of the type of immune response. Given that the dog skin serves as a micro-environment for the multiplication of Leishmania spp., we investigated the parasite load and the expression of TLR-2, iNOS, IL-10 and TNF-α in the skin of 29 infected and 8 control dogs. We found that increased parasite load leads to upregulation of TLR-2, IL-10 and TNF-α, indicating that abundance of these transcripts is associated with infection. We also performed a xenodiagnosis to demonstrate that increased parasitism is a risk factor for infectiousness to sandflies

    Association of missense variants in GDF9 with litter size in Entlebucher Mountain dogs

    Full text link
    In the past two decades, average litter size (ALS) in Entlebucher Mountain dogs decreased by approximately 0.8 puppies. We conducted a GWAS for ALS using the single-step methodology to take advantage of 1632 pedigree records, 892 phenotypes and 372 genotypes (173 662 markers) for which only 12% of the dogs had both phenotypes and genotypes available. Our analysis revealed associations towards the growth differentiation factor 9 gene (GDF9), which is known to regulate oocyte maturation. The trait heritability was estimated at 43.1%, from which approximately 15% was accountable by the GDF9 locus alone. Therefore, markers flanking GDF9 explained approximately 6.5% of the variance in ALS. Analysis of WGSs revealed two missense substitutions in GDF9, one of which (g.11:21147009G>A) affected a highly conserved nucleotide in vertebrates. The derived allele A was validated in 111 dogs and shown to be associated with decreased ALS (-0.75 ± 0.22 puppies per litter). The variant was further predicted to cause a proline to serine substitution. The affected residue was immediately followed by a six-residue deletion that is fixed in the canine species but absent in non-canids. We further confirmed that the deletion is prevalent in the Canidae family by sequencing three species of wild canids. Since canids uniquely ovulate oocytes at the prophase stage of the first meiotic division, requiring maturation in the oviduct, we conjecture that the amino acid substitution and the six-residue deletion of GDF9 may serve as a model for insights into the dynamics of oocyte maturation in canids

    Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth.

    No full text
    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway

    Association of missense variants in GDF9 with litter size in Entlebucher Mountain dogs.

    No full text
    In the past two decades, average litter size (ALS) in Entlebucher Mountain dogs decreased by approximately 0.8 puppies. We conducted a GWAS for ALS using the single-step methodology to take advantage of 1632 pedigree records, 892 phenotypes and 372 genotypes (173 662 markers) for which only 12% of the dogs had both phenotypes and genotypes available. Our analysis revealed associations towards the growth differentiation factor 9 gene (GDF9), which is known to regulate oocyte maturation. The trait heritability was estimated at 43.1%, from which approximately 15% was accountable by the GDF9 locus alone. Therefore, markers flanking GDF9 explained approximately 6.5% of the variance in ALS. Analysis of WGSs revealed two missense substitutions in GDF9, one of which (g.11:21147009G>A) affected a highly conserved nucleotide in vertebrates. The derived allele A was validated in 111 dogs and shown to be associated with decreased ALS (-0.75 ± 0.22 puppies per litter). The variant was further predicted to cause a proline to serine substitution. The affected residue was immediately followed by a six-residue deletion that is fixed in the canine species but absent in non-canids. We further confirmed that the deletion is prevalent in the Canidae family by sequencing three species of wild canids. Since canids uniquely ovulate oocytes at the prophase stage of the first meiotic division, requiring maturation in the oviduct, we conjecture that the amino acid substitution and the six-residue deletion of GDF9 may serve as a model for insights into the dynamics of oocyte maturation in canids

    Network of candidate pleiotropic genes for carcass traits in <i>Bos indicus</i> (Nellore) cattle.

    No full text
    <p>The network was built from known protein-protein interactions (edges) between gene products (nodes). The size of the node is proportional to the number of traits the gene is associated with. In A, the network is portrayed according to the list of genes obtained from the VEGAS analyses. In B, after the inclusion of five essential genes (in blue) form the growth pathway, the network presented itself as a satellite, and four more genes (in red) could be incorporated, including the major pleotropic gene <i>PLAG1</i>.</p

    Pleiotropic Genes Affecting Carcass Traits in <i>Bos indicus</i> (Nellore) Cattle Are Modulators of Growth

    No full text
    <div><p>Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in <i>Bos indicus</i> (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (<i>PLAG1</i>) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with <i>PLAG1</i>, in a network involved in the modulation of the function and expression of <i>IGF1</i> (insulin like growth factor 1), <i>IGF2</i> (insulin like growth factor 2), <i>GH1</i> (growth hormone 1), <i>IGF1R</i> (insulin like growth factor 1 receptor) and <i>GHR</i> (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.</p></div
    corecore