1,055 research outputs found

    Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors

    Full text link
    The magnetic structure of antiferromagnetically ordered phases of quasi-one-dimensional organic conductors is studied theoretically at absolute zero based on the mean field approximation to the quarter-filled band with on-site and nearest-neighbor Coulomb interaction. The differences in magnetic properties between the antiferromagnetic phase of (TMTTF)2_2X and the spin density wave phase in (TMTSF)2_2X are seen to be due to a varying degrees of roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb interaction introduces charge disproportionation, which has the same spatial periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic phase. This is in accordance with the results of experiments on (TMTTF)2_2Br and (TMTTF)2_2SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)2_2Ag is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 5 (1997

    Isotope effects in underdoped cuprate superconductors: a quantum phenomenon

    Full text link
    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in - plane penetration depth naturally follows from the doping driven 3D-2D crossover, the 2D quantum superconductor to insulator transition (QSI) in the underdoped limit and the change of the relative doping concentration upon isotope substitution. Close to the QSI transition both, the isotope coefficient of transition temperature and penetration depth approach the coefficient of the relative dopant concentration, and its divergence sets the scale. These predictions are fully consistent with the experimental data and imply that close to the underdoped limit the unusual isotope effect on transition temperature and penetration depth uncovers critical phenomena associated with the quantum superconductor to insulator transition in two dimensions.Comment: 6 pages, 3 figure

    A skirmish in the early reception of Karl Barth in Scotland: The exchange between Thomas F. Torrance and Brand Blanshard

    Get PDF
    With an introduction by Iain Torrance, this paper reproduces a series of letters in The Scotsman newspaper between T. F. Torrance and the distinguished American philosopher Brand Blanshard. This (at times highly contentious) exchange was occasioned by views expressed by Blanshard in his 1952 Gifford Lectures on Barth and Brunner and what he called their ‘theology of crisis’. The letters give a fascinating insight into the way this new theology was perceived in the English-speaking world at the time

    Excitation Spectrum of One-dimensional Extended Ionic Hubbard Model

    Full text link
    We use Perturbative Continuous Unitary Transformations (PCUT) to study the one dimensional Extended Ionic Hubbard Model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, VV. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system. (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V=0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of VV there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion UU is to split singlet and triplet collective excitation branches, while VV tends to pull the singlet branches below the continuum to make them bound states.Comment: 10 eps figure

    Ordering phenomena in quasi one-dimensional organic conductors

    Full text link
    Low-dimensional organic conductors could establish themselves as model systems for the investigation of the physics in reduced dimensions. In the metallic state of a one-dimensional solid, Fermi-liquid theory breaks down and spin and charge degrees of freedom become separated. But the metallic phase is not stable in one dimension: as the temperature is reduced, the electronic charge and spin tend to arrange themselves in an ordered fashion due to strong correlations. The competition of the different interactions is responsible for which broken-symmetry ground state is eventually realized in a specific compound and which drives the system towards an insulating state. Here we review the various ordering phenomena and how they can be identified by optic and magnetic measurements. While the final results might look very similar in the case of a charge density wave and a charge-ordered metal, for instance, the physical cause is completely different. When density waves form, a gap opens in the density of states at the Fermi energy due to nesting of the one-dimension Fermi surface sheets. When a one-dimensional metal becomes a charge-ordered Mott insulator, on the other hand, the short-range Coulomb repulsion localizes the charge on the lattice sites and even causes certain charge patterns. We try to point out the similarities and conceptional differences of these phenomena and give an example for each of them. Particular emphasis will be put on collective phenomena which are inherently present as soon as ordering breaks the symmetry of the system.Comment: Review article Naturwissenschaften 200

    Mild place illusion: a virtual reality factor to spark creativity in writing

    Get PDF
    Developments in Virtual Reality (VR) technology have modified the creative potential of each individual. We introduce a new con cept, called "mild place illusion", as a new paradigm for designing VR-based user interfaces targeted at stimulating creativity. We show that for creative tasks - such as creative writing, new product ideation, and brainstorming - a "just-enough" amount of place illu sion leads to a greater self-perception of creativity, as opposed to a "full-level" place illusion. This is a somewhat unexpected result since one would suppose, a priori, to have the full-level place illu sion as the optimal setup for stimulating creativity. We considered that the methodology in this work was fairly complex, but our re sults show – through a data triangulation approach – that we were able to identify more consistent and personal creative experiences. Therefore, the main contribution of this paper is a new paradigm for designing VR user interfaces targeted at stimulating creativity by showing that a “one-illusion interspace” leads to a greater self perception of creativity.info:eu-repo/semantics/publishedVersio

    Análise da estrutura fatorial dos Testes de Torrance em estudantes portugueses

    Get PDF
    In order to verify the factorial structures of the Torrance verbal and figural tests, two activities of each instrument were applied with 193 students from the 10th and 12th years of education in Portugal. We tried to demonstrate that the collinearity of the fluency and flexibility variables could create methodological artifacts that hinder the understanding of the internal structure underlying the test. The principal component analysis without control of collinearity indicated a solution composed of four basic factors that separeted activities. Controlling for collinearity, we found a new solution, which also contained four factors that, unlike the previous result, grouped variables with similar processes but of different activities. The verbal and figural content is also an important element in the factor structure. This new arrangement makes more sense with the theory that underlies the instruments separating the different processes and content which are being measured by the activities.Com a finalidade de verificar a estrutura fatorial dos testes de Torrance, duas atividades verbais e duas figurais foram aplicadas em 193 estudantes do 10º e 12º ano do ensino secundário de Portugal. Tentou-se demonstrar que a colinearidade das variáveis fluência e flexibilidade podem criar artefatos metodológicos que dificultam o entendimento da estrutura interna subjacente ao teste. A análise fatorial dos componentes principais, sem controle da colinearidade, indicou uma solução composta por quatro fatores que separam basicamente as atividades. Controlando-se a colinearidade, encontrou-se uma nova solução, também composta por quatro fatores, que, diferentemente da anterior, organizou variáveis com processos semelhantes, mas de diferentes atividades. O tipo de conteúdo, verbal e figural, mostrou-se ainda um importante elemento na organização dos fatores. Esse novo arranjo fez mais sentido diante da teoria que embasa os instrumentos, ao separar os diferentes processos e conteúdos por eles avaliados

    Anomalous electronic susceptibility in Bi2Sr2CuO6+d and comparison with other overdoped cuprates

    Full text link
    We report magnetic susceptibility performed on overdoped Bi2Sr2CuO6+d powders as a function of oxygen doping d and temperature T. The decrease of the spin susceptibility with increasing T is confirmed. At sufficient high temperature, the spin susceptibility Chi_s presents an unusual linear temperature dependence Chi_s ~ Chi_s0 -Chi_1 T. Moreover, a linear correlation between Chi_1 and Chi_s0 for increasing hole concentration is displayed. A temperature Tchi, independent of hole doping characterizes this scaling. Comparison with other cuprates of the literature(LSCO, Tl-2201 and Bi-2212), over the same overdoped range, shows similarities with above results. These non conventional metal features will be discussed in terms of a singular narrow-band structure.Comment: 16 pages, 4 figure

    Spin-orbit coupling in interacting quasi-one-dimensional electron systems

    Full text link
    We present a new model for the study of spin-orbit coupling in interacting quasi-one-dimensional systems and solve it exactly to find the spectral properties of such systems. We show that the combination of spin-orbit coupling and electron-electron interactions results in: the replacement of separate spin and charge excitations with two new kinds of bosonic mixed-spin-charge excitation, and a characteristic modification of the spectral function and single-particle density of states. Our results show how manipulation of the spin-orbit coupling, with external electric fields, can be used for the experimental determination of microscopic interaction parameters in quantum wires.Comment: 5 pages including 4 figures; RevTeX; to appear in Phys.Rev.Let

    Nature of the insulating phases in the half-filled ionic Hubbard model

    Full text link
    We investigate the ground-state phase diagram of the one-dimensional "ionic" Hubbard model with an alternating periodic potential at half-filling by numerical diagonalization of finite systems with the Lanczos and density matrix renormalization group (DMRG) methods. We identify an insulator-insulator phase transition from a band to a correlated insulator with simultaneous charge and bond-charge order. The transition point is characterized by the vanishing of the optical excitation gap while simultaneously the charge and spin gaps remain finite and equal. Indications for a possible second transition into a Mott-insulator phase are discussed.Comment: final for
    corecore