12 research outputs found

    Measurement of vacuum pressure with a magneto-optical trap : a pressure-rise method

    Get PDF
    This research was supported by UK EPSRC grant GR/T08272/01, IOP Scotland and the Leverhulme Trust Research Project Grant RPG-2013-074.The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular where the inclusion of a standard vacuum gauge is impractical.Peer reviewe

    A compact system for ultracold atoms

    Get PDF
    This thesis describes the design, construction and optimisation of two compact setups to produce ⁸⁷Rb Bose-Einstein condensates and dual ⁷Li-⁸⁷Rb Magneto-Optical Traps (MOTs). The motivation for compact systems is to have simplified systems to cool the atoms. The first experimental setup is based on a single pyrex glass cell without the need for atom chips. Fast evaporation will be achieved in a hybrid trap comprising of a magnetic quadrupole trap and an optical dipole trap created by a Nd:YVO4 laser and with future plans of using a Spatial Light Modulator (SLM). To enhance an efficient and rapid evaporation, we have investigated Light-Induced Atomic Desorption (LIAD) to modulate the Rb partial pressure during the cooling and trapping stage. With this technique, a ⁸⁷Rb MOT of 7 x 10⁷ atoms was loaded by shining violet light from a LED source into the glass cell, whose walls are coated with rubidium atoms. The atoms were then cooled by optical molasses and then loaded into a magnetic trap where lifetime measurements demonstrated that LIAD improves on magnetically-trapped atoms loaded from constant background pressure by a factor of six. This is quite encouraging and opens the possibility to do a rapid evaporation. In a second experiment, we have designed a compact system based on a stainless steel chamber to trap either ⁷Li or ⁶Li atoms in a MOT loaded from alkali-metal dispensers without the need of conventional oven-Zeeman slower. This setup can also load ⁸⁷Rb atoms, allowing future projects to simultaneously produce degenerate quantum gases of bosonic ⁸⁷Rb and fermionic ⁶Li atoms

    A practical guide to terahertz imaging using thermal atomic vapour

    Get PDF
    This tutorial aims to provide details on the underlying principles and methodologies of atom-based terahertz imaging techniques. Terahertz imaging is a growing field of research which can provide complementary information to techniques using other regions of the electromagnetic spectrum. Unlike infrared, visible and ultraviolet radiation, terahertz passes through many everyday materials, such as plastics, cloth and card. Compared with images formed using lower frequencies, terahertz images have superior spatial resolution due to the shorter wavelength, while compared to x-rays and gamma rays, terahertz radiation is non-ionising and safe to use. The tutorial begins with the basic principles of terahertz to optical conversion in alkali atoms before discussing how to construct a model to predict the fluorescent spectra of the atoms, on which the imaging method depends. We discuss the practical aspects of constructing an imaging system, including the subsystem specifications. We then review the typical characteristics of the imaging system including spatial resolution, sensitivity and bandwidth. We conclude with a brief discussion of some potential applications

    Light-induced atomic desorption in a compact system for ultracold atoms

    Get PDF
    In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters

    Holographic power-law traps for the efficient production of Bose-Einstein condensates

    Get PDF
    We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a power law from a central maximum with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates (BECs) in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental parameters are used to verify the capability of this approach in producing larger BECs than by evaporative cooling alone
    corecore