11 research outputs found

    Magnetic Resonance-Based Attenuation Correction and Scatter Correction in Neurological Positron Emission Tomography/Magnetic Resonance Imaging—Current Status With Emerging Applications

    No full text
    In this review, we will summarize the past and current state-of-the-art developments in attenuation and scatter correction approaches for hybrid positron emission tomography (PET) and magnetic resonance (MR) imaging. The current status of the methodological advances for producing accurate attenuation and scatter corrections on PET/MR systems are described, in addition to emerging clinical and research applications. Future prospects and potential applications that benefit from accurate data corrections to improve the quantitative accuracy and clinical applicability of PET/MR are also discussed. Novel clinical and research applications where improved attenuation and scatter correction methods are beneficial are highlighted

    Individualized SAR calculations using computer vision‐based MR segmentation and a fast electromagnetic solver

    No full text
    © 2020 International Society for Magnetic Resonance in Medicine Purpose: We propose a fast, patient-specific workflow for on-line specific absorption rate (SAR) supervision. An individualized electromagnetic model is created while the subject is on the table, followed by rapid SAR estimates for that individual. Our goal is an improved correspondence between the patient and model, reducing reliance on general anatomical body models. Methods: A 3D fat-water 3T acquisition (~2 minutes) is automatically segmented using a computer vision algorithm (~1 minute) into what we found to be the most important electromagnetic tissue classes: air, bone, fat, and soft tissues. We then compute the individual’s EM field exposure and global and local SAR matrices using a fast electromagnetic integral equation solver. We assess the approach in 10 volunteers and compare to the SAR seen in a standard generic body model (Duke). Results: The on-the-table workflow averaged 7′44″. Simulation of the simplified Duke models confirmed that only air, bone, fat, and soft tissue classes are needed to estimate global and local SAR with an error of 6.7% and 2.7%, respectively, compared to the full model. In contrast, our volunteers showed a 16.0% and 20.3% population variability in global and local SAR, respectively, which was mostly underestimated by the Duke model. Conclusion: Timely construction and deployment of a patient-specific model is computationally feasible. The benefit of resolving the population heterogeneity compared favorably to the modest modeling error incurred. This suggests that individualized SAR estimates can improve electromagnetic safety in MRI and possibly reduce conservative safety margins that account for patient-model mismatch, especially in non-standard patients

    Implementation of ISO/IEEE 11073 PHD SpO2 and ECG Device Specializations over Bluetooth HDP following Health Care Profile for Smart Living

    No full text
    Current m-Health scenarios in the smart living era, as the interpretation of the smart city at each person’s level, present several challenges associated with interoperability between different clinical devices and applications. The Continua Health Alliance establishes design guidelines to standardize application communication to guarantee interoperability among medical devices. In this paper, we describe the implementation of two IEEE agents for oxygen saturation level (SpO2) measurements and electrocardiogram (ECG) data acquisition, respectively, and a smartphone IEEE manager for validation. We developed both IEEE agents over the Bluetooth Health Device Profile following the Continua guidelines and they are part of a telemonitoring system. This system was evaluated in a sample composed of 10 volunteers (mean age 29.8 ± 7.1 y/o; 5 females) under supervision of an expert cardiologist. The evaluation consisted of measuring the SpO2 and ECG signal sitting and at rest, before and after exercising for 15 min. Physiological measurements were assessed and compared against commercial devices, and our expert physician did not find any relevant differences in the ECG signal. Additionally, the system was assessed when acquiring and processing different heart rate data to prove that warnings were generated when the heart rate was under/above the thresholds for bradycardia and tachycardia, respectively

    Descripción de las saponinas en quinua ("Chenopodium quinoa" willd) en relación con el suelo y el clima: una revisión.

    No full text
    Increasingly, the production of quinoa (Chenopodium quinoa Willd) in different regions of the world becomes more important, due to the fact that it has been sought to position the crop as an alternative to food security. However, this plant has metabolites such as tannins and saponins, which are chemical substances that serve as protective barriers to biotic and abiotic factors. In the case of saponins, 31 chemical structures are recognized, present in leaves, stems, panicles, husk and seeds of different species and genotypes. In this regard, this review seeks to describe general characteristics of the saponins present in quinoa and its relations with soil and climate. Finding that the edaphoclimatics characteristic of each place aswell as the genetic characteristics of each variety are determinants in the content of saponin compounds stimulated mainly by water and saline stress.Cada vez, toma mayor importancia la producción de la quinua (Chenopodium quinoa Willd) en diferentes regiones del mundo, debido a que se ha buscado posicionar el cultivo como una alternativa de seguridad alimentaria. Sin embargo, esta planta presenta metabolitos como taninos y saponinas que son sustancias químicas que sirven de barreras de protección a factores bióticos y abióticos. En el caso de las saponinas, se reconocen 31 estructuras químicas, presentes en hojas, tallos, panojas, cascarilla y semillas de diferentes especies y genotipos. Al respecto, esta revisión busca describir características generales de las saponinas presentes en la quinua y su relación con el suelo y el clima. Encontrando que las edafoclimáticas propias de cada lugar, así como las características genéticas de cada variedad son determinantes en el contenido de compuestos saponínicos, estimulados principalmente por estrés de tipo hídrico y salino

    Computer-Vision Techniques for Water-Fat Separation in Ultra High-Field MRI Local Specific Absorption Rate Estimation

    No full text
    Objective: The purpose of this paper is to prove that computer-vision techniques allow synthesizing water-fat separation maps for local specific absorption rate (SAR) estimation, when patient-specific water-fat images are not available. Methods: We obtained ground truth head models by using patient-specific water-fat images. We obtained two different label-fusion water-fat models generating a water-fat multiatlas and applying the STAPLE and local-MAP-STAPLE label-fusion methods. We also obtained patch-based water-fat models applying a local group-wise weighted combination of the multiatlas. Electromagnetic (EM) simulations were performed, and B1+ magnitude and 10 g averaged SAR maps were generated. Results: We found local approaches provide a high DICE overlap (72.6 ± 10.2% fat and 91.6 ± 1.5% water in local-MAP-STAPLE, and 68.8 ± 8.2% fat and 91.1 ± 1.0% water in patch-based), low Hausdorff distances (18.6 ± 7.7 mm fat and 7.4 ± 11.2 mm water in local-MAP-STAPLE, and 16.4 ± 8.5 mm fat and 7.2 ± 11.8 mm water in patch-based) and a low error in volume estimation (15.6 ± 34.4% fat and 5.6 ± 4.1% water in the local-MAP-STAPLE, and 14.0 ± 17.7% fat and 4.7 ± 2.8% water in patch-based). The positions of the peak 10 g-averaged local SAR hotspots were the same for every model. Conclusion: We have created patient-specific head models using three different computer-vision-based water-fat separation approaches and compared the predictions of B1+ field and SAR distributions generated by simulating these models. Our results prove that a computer-vision approach can be used for patient-specific water-fat separation, and utilized for local SAR estimation in high-field MRI. Significance: Computer-vision approaches can be used for patient-specific water-fat separation and for patient specific local SAR estimation, when water-fat images of the patient are not available

    Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction

    No full text
    Whole-body attenuation correction (AC) is still challenging in combined PET/MR scanners. We describe Dixon-VIBE Deep Learning (DIVIDE), a deep learning network architecture that allows synthesizing pelvis pseudo-CT maps based only on the standard Dixon volumetric interpolated breath-hold examination (Dixon-VIBE) images currently acquired for AC in commercial Siemens scanners. Methods: We propose a network that performs a mapping between the four 2D Dixon MRI images (water, fat, in- and out-of-phase) and their corresponding 2D CT image. In contrast to previous methods, we used transposed convolutions to learn the up-sampling parameters, whole 2D slices to provide context information and pretrained the network with brain images. 28 datasets obtained from 19 patients who underwent PET/CT and PET/MR examinations were used to evaluate the proposed method. We assessed the accuracy of the µ-maps and reconstructed PET images by performing voxel- and region-based analysis comparing the standardize uptake values (SUVs, in g/mL) obtained after AC using the Dixon-VIBE (PETDixon), DIVIDE (PETDIVIDE) and CT-based (PETCT) methods. Additionally, the bias in quantification was estimated in synthetic lesions defined in the prostate, rectum, pelvis and spine. Results: Absolute mean relative change (RC) values relative to CT AC were lower than 2% on average for the DIVIDE method in every region of interest (ROI) except for bone tissue where it was lower than 4% and 6.75 times smaller than the RC of the Dixon method. There was an excellent voxel-by-voxel correlation between PETCT and PETDIVIDE (R2=0.9998, p<0.01). The Bland-Altman plot between PETCT and PETDIVIDE showed that the average of the differences and the variability were lower (mean PETCT-PETDIVIDE SUV=0.0003, σ PETCT-PETDIVIDE=0.0094, CI0.95=[-0.0180,0.0188]) than the average of differences between PETCT and PETDixon (mean PETCT-PETDixon SUV=0.0006, σ PETCT-PETDixon = 0.0264, CI0.95=[-0.0510,0.0524]). Statistically significant changes in PET data quantification were observed between the two methods in the synthetic lesions with the largest improvement in femur and spine lesions. Conclusion: The DIVIDE method can accurately synthesize a pelvis pseudo-CT from standard Dixon-VIBE images, allowing for accurate AC in combined PET/MR scanners. Additionally, our implementation allows rapid pseudo-CT synthesis, making it suitable for routine applications and, even allowing the retrospective processing of Dixon-VIBE data

    Parallel transmit pulse design for patients with deep brain stimulation implants

    No full text
    Purpose Specific absorption rate (SAR) amplification around active implantable medical devices during diagnostic MRI procedures poses a potential risk for patient safety. In this study, we present a parallel transmit (pTx) strategy that can be used to safely scan patients with deep brain stimulation (DBS) implants. Methods We performed electromagnetic simulations at 3T using a uniform phantom and a multitissue realistic head model with a generic DBS implant. Our strategy is based on using implant-friendly modes, which are defined as the modes of an array that reduce the local SAR around the DBS lead tip. These modes are used in a spokes pulse design algorithm in order to produce highly uniform magnitude least-squares flip angle excitations. Results Local SAR (1 g) at the lead tip is reduced below 0.1 W/kg compared with 31.2 W/kg, which is obtained by a simple quadrature birdcage excitation without any sort of SAR mitigation. For the multitissue realistic head model, peak 10 g local SAR and global SAR are obtained as 4.52 W/kg and 0.48 W/kg, respectively. A uniform axial flip angle is also obtained (NRMSE <3%). Conclusion Parallel transmit arrays can be used to generate implant-friendly modes and to reduce SAR around DBS implants while constraining peak local SAR and global SAR and maximizing flip angle homogeneity. Magn Reson Med 73:1896–1903, 2015.National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006847)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB007942

    How To Pseudo-CT: A Comparative Review of Deep Convolutional Neural Network Architectures for CT Synthesis

    No full text
    This paper provides an overview of the different deep convolutional neural network (DCNNs) architectures that have been investigated in the past years for the generation of synthetic computed tomography (CT) or pseudo-CT from magnetic resonance (MR). The U-net, the Atrous-net and the Residual-net architectures were analyzed, implemented and compared. Each network was implemented using 2D filters and 3D filters with 2D slices and 3D patches respectively as inputs. Two datasets were used for training and evaluation. The first one is composed by pairs of 3D T1-weighted MR and Low-dose CT images from the head of 19 healthy women. The second database contains dual echo Dixon-VIBE MR images and CT images from the pelvis of 13 colorectal and 6 prostate cancer patients. Bone structures in the target anatomy were key in choosing the right deep learning approach. This work provides a deep explanation of the architectures in order to know which DCNN fits better each medical application. According to this study, the 3D U-net architecture would be the best option to generate head pseudo-CTs while the 2D Residual-net provides the most accurate results for the pelvis anatomy

    SAR reduction in 7T C-spine imaging using a “dark modes” transmit array strategy

    No full text
    Purpose: Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods: We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results: For B[subscript 1][superscript +] shimming in the spine, the addition of dipole elements did not significantly alter the B[subscript 1][superscript +] spatial pattern but reduced local SAR by 36%. Conclusion: The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant R01EB006847)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant R01EB007942)Madrid-MIT M+Vision Consortiu
    corecore