21 research outputs found

    Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

    Get PDF
    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions

    Expression of polycomb protein BMI-1 1 maintains the plasticity of basal 2 bronchial epithelial cells

    Get PDF
    The airway epithelium is altered in respiratory disease and is thought to contribute to disease aetiology. A caveat to disease research is that the technique of isolation of bronchial epithelial cells from patients is invasive and cells have a limited lifespan. The aim of the current study was to extensively characterise the plasticity of primary human bronchial epithelial cells that have been engineered to delay cell senescence including the ability of these cells to differentiate. Cells were engineered to express BMI-1 or hTERT using viral vector systems. Cells were characterised at passage (p) early (p5), mid (p10) and late (p15) stage for; BMI-1, p16 and CK14 protein expression, viability and the ability to differentiate at air-liquid interface (ALI), using a range of techniques including immunohistochemistry (IHC), immunofluorescence (IF), transepithelial electrical resistance (TEER), Scanning Electron Microscopy (SEM), (MUC5AC and beta tubulin (BTUB) staining). BMI-1 expressing cells maintained elevated levels of the BMI-1 protein and the epithelial marker CK14 and showed a suppression of p16. BMI-1 expressing cells had a viability advantage, differentiated at ALI and had a normal karyotype. In contrast hTERT expressing cells had a reduced viability, showed limited differentiation and had an abnormal karyotype. We therefore provide extensive characterisation of the plasticity of BMI-1 expression cells in the context of the ALI model. These cells retain properties of wild-type cells and may be useful to characterise respiratory disease mechanisms in vitro over sustained periods

    Polymeric microspheres as protein transduction reagents

    Get PDF
    Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere-protein linkage was stable for ≥90 h at 37°C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake

    Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development

    Get PDF
    Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals

    A protocol for isolating and imaging large extracellular vesicles or midbody remnants from mammalian cell culture

    No full text
    Summary: Traditionally, midbody remnants (MBRs) are isolated from cell culture medium using ultracentrifugation, which is expensive and time consuming. Here, we present a protocol for isolating MBRs or large extracellular vesicles (EVs) from mammalian cell culture using either 1.5% polyethylene glycol 6000 (PEG6000) or PEG5000-coated gold nanoparticles. We describe steps for growing cells, collecting media, and precipitating MBRs and EVs from cell culture medium. We then detail characterization of MBRs through immunofluorescent antibody staining and immunofluorescent imaging. : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels

    No full text
    The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant in vitro model of neuro-inflammation

    Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation

    No full text
    <div><p>Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF).</p><p>Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore, endogenous and exogenous semaphorin-7A may have opposite effects on the fibroblast phenotype.</p></div

    Semaphorin-7A diminishes HLF proliferation and migration.

    No full text
    <p>HLF derived from non-fibrotic lungs were treated with either control or semaphorin-7A siRNA and cultured in 1% or 10% FBS for 48 h. A/ BrdU was incubated with cells for 6 h. Absorbance was measured using a spectrophotometric plate reader at dual wavelengths of 450–550 nm. Each condition was performed in quadruplicate (4 wells) and graphs show a mean ± SEM of 3 experiments. B/ Cells were resuspended in 0.1% FBS and migration on plastic or plexin-C1 (10 μg/ml) toward medium with 10% FBS was measured after 20 h. Graph shows an average ± SEM of 4 experiments, and * indicates statistical difference between control-siRNA and sema7A-siRNA-treated HLF.</p
    corecore