25 research outputs found

    Olfactory preference conditioning changes the reward value of reinforced and non-reinforced odors

    Get PDF
    International audienceOlfaction is determinant for the organization of rodent behavior. In a feeding context, rodents must quickly discriminate whether a nutrient can be ingested or whether it represents a potential danger to them. To understand the learning processes that support food choice, aversive olfactory learning and flavor appetitive learning have been extensively studied. In contrast, little is currently known about olfactory appetitive learning and its mechanisms. We designed a new paradigm to study conditioned olfactory preference in rats. After 8 days of exposure to a pair of odors (one paired with sucrose and the other with water), rats developed a strong and stable preference for the odor associated with the sucrose solution. A series of experiments were conducted to further analyze changes in reward value induced by this paradigm for both stimuli. As expected, the reward value of the reinforced odor changed positively. Interestingly, the reward value of the alternative odor decreased. This devaluation had an impact on further odor comparisons that the animal had to make. This result suggests that appetitive conditioning involving a comparison between two odors not only leads to a change in the reward value of the reinforced odor, but also induces a stable devaluation of the non-reinforced stimulus

    Shank2 Mutant Mice Display Hyperactivity Insensitive to Methylphenidate and Reduced Flexibility in Social Motivation, but Normal Social Recognition

    Get PDF
    Mouse models of autism can be used to study evolutionarily conserved mechanisms underlying behavioral abnormalities in social communication and repetitive behaviors. SHANK genes code for synaptic scaffolding proteins at excitatory synapses and mutations in all SHANK genes have been associated with autism. Here, we present three behavioral aspects of the mutant mice deleted for exon 16 in Shank2. First, we treated Shank2 mutant mice with methylphenidate to rescue the hyperactivity. Our failure to do so suggests that the hyperactivity displayed by Shank2 mutant mice is not related to the one displayed by the typical mouse models of hyperactivity, and might be more closely related to manic-like behaviors. Second, by testing the effect of group housing and social isolation on social interest, we highlighted that Shank2 mutant mice lack the typical flexibility to modulate social interest, in comparison with wild-type littermates. Finally, we established a new protocol to test for social recognition in a social context. We used this protocol to show that Shank2 mutant mice were able to discriminate familiar and unknown conspecifics in free interactions. Altogether, these studies shed some light on specific aspects of the behavioral defects displayed by the Shank2 mouse model. Such information could be used to orient therapeutic strategies and to design more specific tests to characterize the complex behavior of mouse models of autism

    Early activation of microglia triggers long-lasting impairment of adult neurogenesis in the olfactory bulb.

    No full text
    International audienceMicroglia, the innate immune cells of the brain, engulf and eliminate cellular debris during brain injury and disease. Recent observations have extended their roles to the healthy brain, but the functional impact of activated microglia on neural plasticity has so far been elusive. To explore this issue, we investigated the role of microglia in the function of the adult olfactory bulb network in which both sensory afferents and local microcircuits are continuously molded by the arrival of adult-born neurons. We show here that the adult olfactory bulb hosts a large population of resident microglial cells. Deafferentation of the olfactory bulb resulted in a transient activation of microglia and a concomitant reduction of adult olfactory bulb neurogenesis. One day after sensory deafferentation, microglial cells proliferate in the olfactory bulb, and their numbers peaked at day 3, and reversed at day 7 after lesion. Similar lesions performed on immunodeficient mice demonstrate that the both innate and adaptive lymphocyte responses are dispensable for the lesion-induced microglial proliferation and activation. In contrast, when mice were treated with an antiinflammatory drug to prevent microglial activation, olfactory deafferentation did not reduce adult neurogenesis, showing that activated microglial cells per se, and not the lack of sensory experience, relates to the survival of adult-born neurons. We conclude that the status of the resident microglia in the olfactory bulb is an important factor directly regulating the survival of immature adult-born neurons

    mouseTube – a database to collaboratively unravel mouse ultrasonic communication [version 1; referees: 2 approved]

    No full text
    Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1) the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2) the biological protocol used to elicit ultrasonic vocalisations; 3) the characteristics of the individual emitting ultrasonic vocalisations (e.g., strain, sex, age). To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders

    The Neural Bases of Disgust for Cheese: An fMRI Study

    Get PDF
    International audienceThe study of food aversion in humans by the induction of illness is ethically unthinkable, and it is difficult to propose a type of food that is disgusting for everybody. However, although cheese is considered edible by most people, it can also be perceived as particularly disgusting to some individuals. As such, the perception of cheese constitutes a good model to study the cerebral processes of food disgust and aversion. In this study, we show that a higher percentage of people are disgusted by cheese than by other types of food. Functional magnetic resonance imaging then reveals that the internal and external globus pallidus and the substantia nigra belonging to the basal ganglia are more activated in participants who dislike or diswant to eat cheese (Anti) than in other participants who like to eat cheese, as revealed following stimulation with cheese odors and pictures. We suggest that the aforementioned basal ganglia structures commonly involved in reward are also involved in the aversive motivated behaviors. Our results further show that the ventral pallidum, a core structure of the reward circuit, is deactivated in Anti subjects stimulated by cheese in the wanting task, highlighting the suppression of motivation-related activation in subjects disgusted by cheese

    Rational design of central selective acetylcholinesterase inhibitors by means of a "bio-oxidisable prodrug" strategy.

    No full text
    International audienceThis work deals with the design of a bio-oxidisable prodrug strategy for the development of new central selective acetylcholinesterase inhibitors. This prodrug approach is expected to reduce peripheral anticholinesterase activity responsible for various side effects observed with presently marketed AChE inhibitors. The design of these new AChE inhibitors in quinoline series is roughly based on cyclic analogues of rivastigmine. The key activation step of the prodrug involves an oxidation of an N-alkyl-1,4-dihydroquinoline 1 to the corresponding quinolinium salt 2 unmasking the positive charge required for binding to the catalytic anionic site of the enzyme. The synthesis of a set of 1,4-dihydroquinolines 1 and their corresponding quinolinium salts 2 is presented. An in vitro biological evaluation revealed that while all reduced forms 1 were unable to exhibit any anticholinesterase activity (IC50 > 10(6) nM), most of the quinolinium salts 2 displayed high AChE inhibitory activity (IC50 ranging from 6 microM to 7 nM). These preliminary in vitro assays validate the use of these cyclic analogues of rivastigmine in quinoline series as appealing chemical tools for further in vivo development of this bio-oxidisable prodrug approach

    Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors.

    No full text
    International audienceAlcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2-/- and β4-/- mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2-/- and β4-/- mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs

    The Autism ProSAP1/Shank2 mouse model displays quantitative and structural abnormalities in ultrasonic vocalisations.

    No full text
    International audienceMouse ultrasonic vocalisations have been often used as a paradigm to extrapolate vocal communication defects observed in patients with autism spectrum disorders (ASD). The role of these vocalisations as well as their development, structure and informational content, however, remain largely unknown. In the present study, we characterised in depth the emission of pup and adult ultrasonic vocalisations of wild-type mice and their ProSAP1/Shank2(-/-) littermates lacking a synaptic scaffold protein mutated in ASD. We hypothesised that the vocal behaviour of ProSAP1/Shank2(-/-) mice not only differs from the vocal behaviour of their wild-type littermates in a quantitative way, but also presents more qualitative abnormalities in temporal organisation and acoustic structure. We first quantified the rate of emission of ultrasonic vocalisations, and analysed the organisation of vocalisations sequences using Markov models. We subsequently measured duration and peak frequency characteristics of each ultrasonic vocalisation, to characterise their acoustic structure. In wild-type mice, we found a high level of organisation in sequences of ultrasonic vocalisations, suggesting a communicative function in this complex system. Very limited significant sex-related variations were detected in their usage and acoustic structure, even in adult mice. In adult ProSAP1/Shank2(-/-) mice, we found abnormalities in the call usage and the structure of ultrasonic vocalisations. Both ProSAP1/Shank2(-/-) male and female mice uttered less vocalisations with a different call distribution and at lower peak frequency in comparison with wild-type littermates. This study provides a comprehensive framework to characterise abnormalities of ultrasonic vocalisations in mice and confirms that ProSAP1/Shank2(-/-) mice represent a relevant model to study communication defects

    Recording Mouse Ultrasonic Vocalizations to Evaluate Social Communication.

    No full text
    International audienceMice emit ultrasonic vocalizations in different contexts throughout development and in adulthood. These vocal signals are now currently used as proxies for modeling the genetic bases of vocal communication deficits. Characterizing the vocal behavior of mouse models carrying mutations in genes associated with neuropsychiatric disorders such as autism spectrum disorders will help to understand the mechanisms leading to social communication deficits. We provide here protocols to reliably elicit ultrasonic vocalizations in pups and in adult mice. This standardization will help reduce inter-study variability due to the experimental settings. Pup isolation calls are recorded throughout development from individual pups isolated from dam and littermates. In adulthood, vocalizations are recorded during same-sex interactions (without a sexual component) by exposing socially motivated males or females to an unknown same-sex conspecific. We also provide a protocol to record vocalizations from adult males exposed to an estrus female. In this context, there is a sexual component in the interaction. These protocols are established to elicit a large amount of ultrasonic vocalizations in laboratory mice. However, we point out the important inter-individual variability in the vocal behavior of mice, which should be taken into account by recording a minimal number of individuals (at least 12 in each condition). These recordings of ultrasonic vocalizations are used to evaluate the call rate, the vocal repertoire and the acoustic structure of the calls. Data are combined with the analysis of synchronous video recordings to provide a more complete view on social communication in mice. These protocols are used to characterize the vocal communication deficits in mice lacking ProSAP1/Shank2, a gene associated with autism spectrum disorders. More ultrasonic vocalizations recordings can also be found on the mouseTube database, developed to favor the exchange of such data
    corecore