167 research outputs found

    Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2

    Get PDF
    Aspergillus fumigatus is a fungal pathogen causing severe infections in immunocompromised patients. For clearance of inhaled conidia, an efficient response of the innate immune system is required. Macrophages represent the first line of defence and ingest and kill conidia. C-type lectins represent a family of receptors, which recognize pathogen-specific carbohydrates. One of them is beta1-3 glucan, a major component of the fungal cell wall. Here we provide evidence that beta1-3 glucan plays an important role for the elimination of A. fumigatus conidia. Laminarin, a soluble beta1-3 glucan and antibodies to dectin-1, a well known beta1-3 glucan receptor, significantly inhibited conidial phagocytosis. On resting conidia low amounts of surface accessible beta1-3 glucan were detected, whereas high amounts were found on small spores that appear early during germination and infection as well as on resting conidia of a pksP mutant strain. Swollen conidia also display larger quantities of beta1-3 glucan, although in an irregular spotted pattern. Resting pksP mutant conidia and swollen wild-type conidia are phagocytosed with high efficiency thereby confirming the relevance of beta1-3 glucans for conidial phagocytosis. Additionally we found that TLR2 and the adaptor protein MyD88 are required for efficient conidial phagocytosis, suggesting a link between the TLR2-mediated recognition of A. fumigatus and the phagocytic response

    Laplacian Fractal Growth in Media with Quenched Disorder

    Full text link
    We analyze the combined effect of a Laplacian field and quenched disorder for the generation of fractal structures with a study, both numerical and theoretical, of the quenched dielectric breakdown model (QDBM). The growth dynamics is shown to evolve from the avalanches of invasion percolation (IP) to the smooth growth of Laplacian fractals, i. e. diffusion limited aggregation (DLA) and the dielectric breakdown model (DBM). The fractal dimension is strongly reduced with respect to both DBM and IP, due to the combined effect of memory and field screening. This implies a specific relation between the fractal dimension of the breakdown structures (dielectric or mechanical) and the microscopic properties of disordered materials.Comment: 11 pages Latex (revtex), 3 postscript figures included. Submitted to PR

    Protection by Anti-β-Glucan Antibodies Is Associated with Restricted β-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence

    Get PDF
    Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model

    Horizontal Transmission of Candida albicans and Evidence of a Vaccine Response in Mice Colonized with the Fungus

    Get PDF
    Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis

    UDP-glucose 4, 6-dehydratase Activity Plays an Important Role in Maintaining Cell Wall Integrity and Virulence of Candida albicans

    Get PDF
    Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFNγ and TNFα levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens

    Fungal vaccines and immunotherapeutics: current concepts and future challenges

    Get PDF
    Purpose of review The remarkable advances in modern medicine have paradoxically resulted in a rapidly expanding population of immunocompromised patients displaying extreme susceptibility to life-threatening fungal infections. There are currently no licensed vaccines, and the prophylaxis and therapy of fungal infections in at-risk individuals remains challenging, contributing to undesirable mortality and morbidity rates. The design of successful antifungal preventive approaches has been hampered by an insufficient understanding of the dynamics of the host-fungus interaction and the mechanisms that underlie heterogenous immune responses to vaccines and immunotherapy. Recent findings Recent advances in proteomics and glycomics have contributed to the identification of candidate antigens for use in subunit vaccines, novel adjuvants, and delivery systems to boost the efficacy of protective vaccination responses that are becoming available, and several targets are being exploited in immunotherapeutic approaches. Summary We review some of the emerging concepts as well as the inherent challenges to the development of fungal vaccines and immunotherapies to protect at-risk individuals.ThisworkwassupportedbytheNorthernPortugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (contracts IF/00735/ 2014 to A.C., and SFRH/BPD/96176/2013 to C.C).info:eu-repo/semantics/publishedVersio

    Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model

    Get PDF
    Abstract Background Using killed microorganisms or their parts to stimulate immunity for cancer treatment dates back to the end of 19th century. Since then, it undergone considerable development. Our novel approach binds ligands to the tumor cell surface, which stimulates tumor phagocytosis. The therapeutic effect is further amplified by simultaneous application of agonists of Toll-like receptors. We searched for ligands that induce both a strong therapeutic effect and are safe for humans. Methods B16-F10 murine melanoma model was used. For the stimulation of phagocytosis, mannan or N-formyl-methionyl-leucyl-phenylalanine, was covalently bound to tumor cells or attached using hydrophobic anchor. The following agonists of Toll-like receptors were studied: monophosphoryl lipid A (MPLA), imiquimod (R-837), resiquimod (R-848), poly(I:C), and heat killed Listeria monocytogenes. Results R-848 proved to be the most suitable Toll-like receptor agonist for our novel immunotherapeutic approach. In combination with covalently bound mannan, R-848 significantly reduced tumor growth. Adding poly(I:C) and L. monocytogenes resulted in complete recovery in 83% of mice and in their protection from the re-transplantation of melanoma cells. Conclusion An efficient cancer treatment results from the combination of Toll-like receptor agonists and phagocytosis stimulating ligands bound to the tumor cells.http://deepblue.lib.umich.edu/bitstream/2027.42/134739/1/12885_2016_Article_2982.pd

    β-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    Get PDF
    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells

    Identification of a Putative Crf Splice Variant and Generation of Recombinant Antibodies for the Specific Detection of Aspergillus fumigatus

    Get PDF
    BACKGROUND: Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA) in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. RESULTS: The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16) which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs) were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. CONCLUSION: Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus
    corecore