729 research outputs found

    Black hole spin inferred from 3:2 epicyclic resonance model of high-frequency quasi-periodic oscillations

    Full text link
    Estimations of black hole spin in the three Galactic microquasars GRS 1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on spectral and timing X-ray measurements and various theoretical concepts. Among others, a non-linear resonance between axisymmetric epicyclic oscillation modes of an accretion disc around a Kerr black hole has been considered as a model for the observed high-frequency quasi-periodic oscillations (HF QPOs). Estimates of spin predicted by this model have been derived based on the geodesic approximation of the accreted fluid motion. Here we assume accretion flow described by the model of a pressure-supported torus and carry out related corrections to the mass-spin estimates. We find that for dimensionless black hole spin a<0.9, the resonant eigenfrequencies are very close to those calculated for the geodesic motion. Their values slightly grow with increasing torus thickness. These findings agree well with results of a previous study carried out in the pseudo-Newtonian approximation. The situation becomes different for a>0.9, in which case the resonant eigenfrequencies rapidly decrease as the torus thickness increases. We conclude that the assumed non-geodesic effects shift the lower limit of the spin, implied for the three microquasars by the epicyclic model and independently measured masses, from a~0.7 to a~0.6. Their consideration furthermore confirms compatibility of the model with the rapid spin of GRS 1915+105 and provides highly testable predictions of the QPO frequencies. Individual sources with a moderate spin (a<0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies than sources with a near-extreme spin (a~1). This should be further examined using the large amount of high-resolution data expected to become available with the next generation of X-ray instruments, such as the proposed Large Observatory for X-ray Timing (LOFT).Comment: 6 pages, 4 figures, accepted by Astronomy & Astrophysic

    High Statistics Analysis using Anisotropic Clover Lattices: (IV) Volume Dependence of Light Hadron Masses

    Full text link
    The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L ~ 2.0, 2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_pi ~ 390 MeV. The typical precision of the ground-state baryon mass determination is ~0.2%, enabling a precise exploration of the volume dependence of the masses, the Gell-Mann--Okubo mass relation, and of other mass combinations. A comparison of the volume dependence with the predictions of heavy baryon chiral perturbation theory is performed in both the SU(2)_L X SU(2)_R and SU(3)_L X SU(3)_R expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe the observed volume dependences reasonably well. Further, the Delta-N-pi axial coupling constant is extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only small modifications in the three-flavor expansion from the inclusion of kaons and etas. At a given value of m_pi L, the finite-volume contributions to the nucleon mass are predicted to be significantly smaller at m_pi ~ 140 MeV than at m_pi ~ 390 MeV due to a coefficient that scales as ~ m_pi^3. This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.Comment: 34 pages, 45 figure

    Present Constraints on the H-dibaryon at the Physical Point from Lattice QCD

    Full text link
    The current constraints from lattice QCD on the existence of the H-dibaryon are discussed. With only two significant lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the forms of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state. Further lattice QCD calculations are required to clarify this situation.Comment: 8 pages, 2 figures, 1 table; revised for the journa

    The correlations and anticorrelations in QPO data

    Full text link
    Double peak kHz QPO frequencies in neutron star sources varies in time by a factor of hundreds Hz while in microquasar sources the frequencies are fixed and located at the line \nu_2 = 1.5 \nu_1 in the frequency-frequency plot. The crucial question in the theory of twin HFQPOs is whether or not those observed in neutron-star systems are essentially different from those observed in black holes. In black hole systems the twin HFQPOs are known to be in a 3:2 ratio for each source. At first sight, this seems not to be the case for neutron stars. For each individual neutron star, the upper and lower kHz QPO frequencies, \nu_2 and \nu_1, are linearly correlated, \nu_2=A \nu_1 + B, with the slope A < 1.5, i.e., the frequencies definitely are not in a 1.5 ratio. In this contribution we show that when considered jointly on a frequency-frequency plot, the data for the twin kHz QPO frequencies in several (as opposed to one) neutron stars uniquely pick out a certain preferred frequency ratio that is equal to 1.5 for the six sources examined so far.Comment: 3 pages, 1 figure, Astronomische Nachrichten, in pres

    Electromagnetic contributions to pseudoscalar masses

    Get PDF
    We report on the calculation by the MILC Collaboration of the electromagnetic effects on kaon and pion masses. These masses are computed in QCD with dynamical (asqtad staggered) quarks plus quenched photons at three lattice spacings varying from 0.12 to 0.06 fm. The masses are fit to staggered chiral perturbation theory with NLO electromagnetic terms, as well as analytic terms at higher order. We extrapolate the results to physical light-quark masses and to the continuum limit. At the current stage of the analysis, most, but not all, of the systematic errors have been estimated. The main goal is the comparison of kaon electromagnetic splittings to those of the pion, i.e., an evaluation of the corrections to “Dashen’s theorem.” This in turn will allow us to significantly reduce the systematic errors in our determination of m&lt;sub&gt;u&lt;/sub&gt;/m&lt;sub&gt;d&lt;/sub&gt;

    Expressed Ay HMW glutenin subunit in Australian wheat cultivars indicates a positive effect on wheat quality

    Get PDF
    Out of the six HMW-GS genes, 1Ay is usually not expressed in bread wheat cultivars. In the current study, an active 1Ay gene has been integrated into two Australian wheat cultivars, Livingston and Bonnie Rock, through conventional backcross approach. Three sister lines at BC4F4 generation for each cross were obtained and underwent a series of quality testing. Results show that the active 1Ay subunit increased the amount total protein, Glutenin/Gliadin ratio and unextractable polymeric protein. The expressed 1Ay also resulted in up to 10% increase of gluten content, 5% increase of glutenin, and hence increased the HMW- to LMW-GS ratio without affecting the relative amount of other subunits. Milling yield and Flour swelling were decreased in the Livingston lines and remained mostly unchanged for Bonnie Rock. Alveograph result showed that Ay improved dough strength in Livingston and dough extensibility in Bonnie Rock. Zeleny sedimentation value was found to be higher in all three lines of Bonnie Rock but only in one of Livingston derivatives. The dough development time and peak resistance, determined on the micro Z-arm mixer were increased in most cases. Overall, the integration of Ay subunit showed significant positive effects in bread making quality

    Deformation and flow of a two-dimensional foam under continuous shear

    Full text link
    We investigate the flow properties of a two-dimensional aqueous foam submitted to a quasistatic shear in a Couette geometry. A strong localization of the flow (shear banding) at the edge of the moving wall is evidenced, characterized by an exponential decay of the average tangential velocity. Moreover, the analysis of the rapid velocity fluctuations reveals self-similar dynamical structures consisting of clusters of bubbles rolling as rigid bodies. To relate the instantaneous (elastic) and time-averaged (plastic) components of the strain, we develop a stochastic model where irreversible rearrangements are activated by local stress fluctuations originating from the rubbing of the wall. This model gives a complete description of our observations and is also consistent with data obtained on granular shear bands by other groups.Comment: 5 pages, 2 figure

    Remnant lipoprotein cholesterol is associated with incident new onset diabetes after transplantation (NODAT) in renal transplant recipients:results of the TransplantLines Biobank and cohort Studies

    Get PDF
    BACKGROUND: New onset diabetes after transplantation (NODAT) is a frequent and serious complication of renal transplantation resulting in worse graft and patient outcomes. The pathophysiology of NODAT is incompletely understood, and no prospective biomarkers have been established to predict NODAT risk in renal transplant recipients (RTR). The present work aimed to determine whether remnant lipoprotein (RLP) cholesterol could serve as such a biomarker that would also provide a novel target for therapeutic intervention. METHODS: This longitudinal cohort study included 480 RTR free of diabetes at baseline. 53 patients (11%) were diagnosed with NODAT during a median [interquartile range, IQR] follow-up of 5.2 [4.1–5.8] years. RLP cholesterol was calculated by subtracting HDL and LDL cholesterol from total cholesterol values (all directly measured). RESULTS: Baseline remnant cholesterol values were significantly higher in RTR who subsequently developed NODAT (0.9 [0.5–1.2] mmol/L vs. 0.6 [0.4–0.9] mmol/L, p = 0.001). Kaplan-Meier analysis showed that higher RLP cholesterol values were associated with an increased risk of incident NODAT (log rank test, p < 0.001). Cox regression demonstrated a significant longitudinal association between baseline RLP cholesterol levels and NODAT (HR, 2.27 [1.64–3.14] per 1 SD increase, p < 0.001) that remained after adjusting for plasma glucose and HbA1c (p = 0.002), HDL and LDL cholesterol (p = 0.008) and use of immunosuppressive medication (p < 0.001), among others. Adding baseline remnant cholesterol to the Framingham Diabetes Risk Score significantly improved NODAT prediction (change in C-statistic, p = 0.01). CONCLUSIONS: This study demonstrates that baseline RLP cholesterol levels strongly associate with incident NODAT independent of several other recognized risk factors

    Erythropoietin receptor expression is a potential prognostic factor in human lung adenocarcinoma

    Get PDF
    Recombinant human erythropoietins (rHuEPOs) are used to treat cancer-related anemia. Recent preclinical studies and clinical trials, however, have raised concerns about the potential tumor-promoting effects of these drugs. Because the clinical significance of erythropoietin receptor (EPOR) signaling in human non-small cell lung cancer (NSCLC) also remains controversial, our aim was to study whether EPO treatment modifies tumor growth and if EPOR expression has an impact on the clinical behavior of this malignancy. A total of 43 patients with stage III-IV adenocarcinoma (ADC) and complete clinicopathological data were included. EPOR expression in human ADC samples and cell lines was measured by quantitative real-time polymerase chain reaction. Effects of exogenous rHuEPOalpha were studied on human lung ADC cell lines in vitro. In vivo growth of human ADC xenografts treated with rHuEPOalpha with or without chemotherapy was also assessed. In vivo tumor and endothelial cell (EC) proliferation was determined by 5-bromo-2'-deoxy-uridine (BrdU) incorporation and immunofluorescent labeling. Although EPOR mRNA was expressed in all of the three investigated ADC cell lines, rHuEPOalpha treatment (either alone or in combination with gemcitabine) did not alter ADC cell proliferation in vitro. However, rHuEPOalpha significantly decreased tumor cell proliferation and growth of human H1975 lung ADC xenografts. At the same time, rHuEPOalpha treatment of H1975 tumors resulted in accelerated tumor endothelial cell proliferation. Moreover, in patients with advanced stage lung ADC, high intratumoral EPOR mRNA levels were associated with significantly increased overall survival. This study reveals high EPOR level as a potential novel positive prognostic marker in human lung ADC

    Apelin promotes lymphangiogenesis and lymph node metastasis

    Get PDF
    Whereas the role of the G-protein-coupled APJ receptor and its ligand, apelin, in angiogenesis has been well documented, the ability of the apelin/APJ system to induce lymphangiogenesis and lymphatic metastasis has been largely unexplored. To this end, we first show that APJ is expressed in lymphatic endothelial cells (LECs) and, moreover, that it responds to apelin by activating the apelinergic signaling cascade. We find that although apelin treatment does not influence the proliferation of LECs in vitro, it enhances their migration, protects them against UV irradiation-induced apoptosis, increases their spheroid numbers in 3D culture, stimulates their in vitro capillary-like tube formation and, furthermore, promotes the invasive growth of lymphatic microvessels in vivo in the matrigel plug assay. We also demonstrate that apelin overexpression in malignant cells is associated with accelerated in vivo tumor growth and with increased intratumoral lymphangiogenesis and lymph node metastasis. These results indicate that apelin induces lymphangiogenesis and, accordingly, plays an important role in lymphatic tumor progression. Our study does not only reveal apelin as a novel lymphangiogenic factor but might also open the door for the development of novel anticancer therapies targeting lymphangiogenesis
    • …
    corecore