10 research outputs found

    Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    Get PDF
    BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management

    Get PDF
    Abstract Background Variability in standard-of-care classifications precludes accurate predictions of early tumor recurrence for individual patients with meningioma, limiting the appropriate selection of patients who would benefit from adjuvant radiotherapy to delay recurrence. We aimed to develop an individualized prediction model of early recurrence risk combining clinical and molecular factors in meningioma. Methods DNA methylation profiles of clinically annotated tumor samples across multiple institutions were used to develop a methylome model of 5-year recurrence-free survival (RFS). Subsequently, a 5-year meningioma recurrence score was generated using a nomogram that integrated the methylome model with established prognostic clinical factors. Performance of both models was evaluated and compared with standard-of-care models using multiple independent cohorts. Results The methylome-based predictor of 5-year RFS performed favorably compared with a grade-based predictor when tested using the 3 validation cohorts (ΔAUC = 0.10, 95% CI: 0.03–0.018) and was independently associated with RFS after adjusting for histopathologic grade, extent of resection, and burden of copy number alterations (hazard ratio 3.6, 95% CI: 1.8–7.2, P &lt; 0.001). A nomogram combining the methylome predictor with clinical factors demonstrated greater discrimination than a nomogram using clinical factors alone in 2 independent validation cohorts (ΔAUC = 0.25, 95% CI: 0.22–0.27) and resulted in 2 groups with distinct recurrence patterns (hazard ratio 7.7, 95% CI: 5.3–11.1, P &lt; 0.001) with clinical implications. Conclusions The models developed and validated in this study provide important prognostic information not captured by previously established clinical and molecular factors which could be used to individualize decisions regarding postoperative therapeutic interventions, in particular whether to treat patients with adjuvant radiotherapy versus observation alone. </jats:sec

    The Human Microbiome and Its Role in Musculoskeletal Disorders

    No full text
    Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs

    Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005

    Get PDF
    Background: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the iming and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate

    The aqueous processing of minerals and materials

    No full text

    Progression of Geographic Atrophy in Age-related Macular Degeneration

    No full text
    corecore