413 research outputs found

    Development of a mass spectrometer design Final report, Jun. 1, 1964 - Dec. 31, 1964

    Get PDF
    Cold cathode ion source mated to quadrupole mass spectrometer for use as residual gas analyze

    A cold cathode ion source mass spectrometer employing ion counting techniques

    Get PDF
    Design and construction of mass spectrometer using cold cathode source of ions, quadrupole mass analyzer, and ion counting detector

    Two-Scale Annihilation

    Full text link
    The kinetics of single-species annihilation, A+A→0A+A\to 0, is investigated in which each particle has a fixed velocity which may be either ±v\pm v with equal probability, and a finite diffusivity. In one dimension, the interplay between convection and diffusion leads to a decay of the density which is proportional to t−3/4t^{-3/4}. At long times, the reactants organize into domains of right- and left-moving particles, with the typical distance between particles in a single domain growing as t3/4t^{3/4}, and the distance between domains growing as tt. The probability that an arbitrary particle reacts with its nthn^{\rm th} neighbor is found to decay as n−5/2n^{-5/2} for same-velocity pairs and as n−7/4n^{-7/4} for +−+- pairs. These kinetic and spatial exponents and their interrelations are obtained by scaling arguments. Our predictions are in excellent agreement with numerical simulations.Comment: revtex, 5 pages, 5 figures, also available from http://arnold.uchicago.edu/~eb

    Fast-diffusion mean-field theory for k-body reactions in one dimension

    Full text link
    We derive an improved mean-field approximation for k-body annihilation reactions kA --> inert, for hard-core diffusing particles on a line, annihilating in groups of k neighbors with probability 0 < q <= 1. The hopping and annihilation processes are correlated to mimic chemical reactions. Our new mean-field theory accounts for hard-core particle properties and has a larger region of applicability than the standard chemical rate equation especially for large k values. Criteria for validity of the mean-field theory and its use in phenomenological data fits are derived. Numerical tests are reported for k=3,4,5,6.Comment: 16 pages, TeX (plain

    Model of Cluster Growth and Phase Separation: Exact Results in One Dimension

    Full text link
    We present exact results for a lattice model of cluster growth in 1D. The growth mechanism involves interface hopping and pairwise annihilation supplemented by spontaneous creation of the stable-phase, +1, regions by overturning the unstable-phase, -1, spins with probability p. For cluster coarsening at phase coexistence, p=0, the conventional structure-factor scaling applies. In this limit our model falls in the class of diffusion-limited reactions A+A->inert. The +1 cluster size grows diffusively, ~t**(1/2), and the two-point correlation function obeys scaling. However, for p>0, i.e., for the dynamics of formation of stable phase from unstable phase, we find that structure-factor scaling breaks down; the length scale associated with the size of the growing +1 clusters reflects only the short-distance properties of the two-point correlations.Comment: 12 page

    Spatial distribution of persistent sites

    Full text link
    We study the distribution of persistent sites (sites unvisited by particles AA) in one dimensional A+A→∅A+A\to\emptyset reaction-diffusion model. We define the {\it empty intervals} as the separations between adjacent persistent sites, and study their size distribution n(k,t)n(k,t) as a function of interval length kk and time tt. The decay of persistence is the process of irreversible coalescence of these empty intervals, which we study analytically under the Independent Interval Approximation (IIA). Physical considerations suggest that the asymptotic solution is given by the dynamic scaling form n(k,t)=s−2f(k/s)n(k,t)=s^{-2}f(k/s) with the average interval size s∼t1/2s\sim t^{1/2}. We show under the IIA that the scaling function f(x)∼x−τf(x)\sim x^{-\tau} as x→0x\to 0 and decays exponentially at large xx. The exponent τ\tau is related to the persistence exponent θ\theta through the scaling relation τ=2(1−θ)\tau=2(1-\theta). We compare these predictions with the results of numerical simulations. We determine the two-point correlation function C(r,t)C(r,t) under the IIA. We find that for r≪sr\ll s, C(r,t)∼r−αC(r,t)\sim r^{-\alpha} where α=2−τ\alpha=2-\tau, in agreement with our earlier numerical results.Comment: 15 pages in RevTeX, 5 postscript figure

    The duality relation between Glauber dynamics and the diffusion-annihilation model as a similarity transformation

    Full text link
    In this paper we address the relationship between zero temperature Glauber dynamics and the diffusion-annihilation problem in the free fermion case. We show that the well-known duality transformation between the two problems can be formulated as a similarity transformation if one uses appropriate (toroidal) boundary conditions. This allow us to establish and clarify the precise nature of the relationship between the two models. In this way we obtain a one-to-one correspondence between observables and initial states in the two problems. A random initial state in Glauber dynamics is related to a short range correlated state in the annihilation problem. In particular the long-time behaviour of the density in this state is seen to depend on the initial conditions. Hence, we show that the presence of correlations in the initial state determine the dependence of the long time behaviour of the density on the initial conditions, even if such correlations are short-ranged. We also apply a field-theoretical method to the calculation of multi-time correlation functions in this initial state.Comment: 15 pages, Latex file, no figures. To be published in J. Phys. A. Minor changes were made to the previous version to conform with the referee's Repor

    Particle Dynamics in a Mass-Conserving Coalescence Process

    Full text link
    We consider a fully asymmetric one-dimensional model with mass-conserving coalescence. Particles of unit mass enter at one edge of the chain and coalescence while performing a biased random walk towards the other edge where they exit. The conserved particle mass acts as a passive scalar in the reaction process A+A→AA+A\to A, and allows an exact mapping to a restricted ballistic surface deposition model for which exact results exist. In particular, the mass- mass correlation function is exactly known. These results complement earlier exact results for the A+A→AA+A\to A process without mass. We introduce a comprehensive scaling theory for this process. The exact anaytical and numerical results confirm its validity.Comment: 5 pages, 6 figure
    • …
    corecore