537 research outputs found

    Absence of kinetic effects in reaction-diffusion processes in scale-free networks

    Full text link
    We show that the chemical reactions of the model systems of A+A->0 and A+B->0 when performed on scale-free networks exhibit drastically different behavior as compared to the same reactions in normal spaces. The exponents characterizing the density evolution as a function of time are considerably higher than 1, implying that both reactions occur at a much faster rate. This is due to the fact that the discerning effects of the generation of a depletion zone (A+A) and the segregation of the reactants (A+B) do not occur at all as in normal spaces. Instead we observe the formation of clusters of A (A+A reaction) and of mixed A and B (A+B reaction) around the hubs of the network. Only at the limit of very sparse networks is the usual behavior recovered.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Characteristics of reaction-diffusion on scale-free networks

    Full text link
    We examine some characteristic properties of reaction-diffusion processes of the A+A->0 type on scale-free networks. Due to the inhomogeneity of the structure of the substrate, as compared to usual lattices, we focus on the characteristics of the nodes where the annihilations occur. We show that at early times the majority of these events take place on low-connectivity nodes, while as time advances the process moves towards the high-connectivity nodes, the so-called hubs. This pattern remarkably accelerates the annihilation of the particles, and it is in agreement with earlier predictions that the rates of reaction-diffusion processes on scale-free networks are much faster than the equivalent ones on lattice systems

    From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest

    Get PDF
    A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity. This article is part of the theme issue ’Collective movement ecology’

    Context-dependent interaction leads to emergent search behavior in social aggregates

    Get PDF
    Locating the source of an advected chemical signal is a common challenge facing many living organisms. When the advecting medium is characterized by either high Reynolds number or high Peclet number the task becomes highly non-trivial due to the generation of heterogenous, dynamically changing filamental concentrations which do not decrease monotonically with distance to the source. Defining search strategies which are effective in these environments has important implications for the understanding of animal behavior and for the design of biologically inspired technology. Here we present a strategy which is able to solve this task without the higher intelligence required to assess spatial gradient direction, measure the diffusive properties of the flow field or perform complex calculations. Instead our method is based on the collective behavior of autonomous individuals following simple social interaction rules which are modified according to the local conditions they are experiencing. Through these context-dependent interactions the group is able to locate the source of a chemical signal and in doing so displays an awareness of the environment not present at the individual level. Our model demonstrates the ability of decentralized information processing systems to solve real world problems and also illustrates an alternative pathway to the evolution of higher cognitive capacity via the emergent, group level intelligence which can result from local interactions.Comment: 3 figure

    Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension

    Full text link
    We study the diffusion-limited process A+A→AA+A\to A in one dimension, with finite reaction rates. We develop an approximation scheme based on the method of Inter-Particle Distribution Functions (IPDF), which was formerly used for the exact solution of the same process with infinite reaction rate. The approximation becomes exact in the very early time regime (or the reaction-controlled limit) and in the long time (diffusion-controlled) asymptotic limit. For the intermediate time regime, we obtain a simple interpolative behavior between these two limits. We also study the coalescence process (with finite reaction rates) with the back reaction A→A+AA\to A+A, and in the presence of particle input. In each of these cases the system reaches a non-trivial steady state with a finite concentration of particles. Theoretical predictions for the concentration time dependence and for the IPDF are compared to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j 05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0

    Fast-diffusion mean-field theory for k-body reactions in one dimension

    Full text link
    We derive an improved mean-field approximation for k-body annihilation reactions kA --> inert, for hard-core diffusing particles on a line, annihilating in groups of k neighbors with probability 0 < q <= 1. The hopping and annihilation processes are correlated to mimic chemical reactions. Our new mean-field theory accounts for hard-core particle properties and has a larger region of applicability than the standard chemical rate equation especially for large k values. Criteria for validity of the mean-field theory and its use in phenomenological data fits are derived. Numerical tests are reported for k=3,4,5,6.Comment: 16 pages, TeX (plain

    Two-Scale Annihilation

    Full text link
    The kinetics of single-species annihilation, A+A→0A+A\to 0, is investigated in which each particle has a fixed velocity which may be either ±v\pm v with equal probability, and a finite diffusivity. In one dimension, the interplay between convection and diffusion leads to a decay of the density which is proportional to t−3/4t^{-3/4}. At long times, the reactants organize into domains of right- and left-moving particles, with the typical distance between particles in a single domain growing as t3/4t^{3/4}, and the distance between domains growing as tt. The probability that an arbitrary particle reacts with its nthn^{\rm th} neighbor is found to decay as n−5/2n^{-5/2} for same-velocity pairs and as n−7/4n^{-7/4} for +−+- pairs. These kinetic and spatial exponents and their interrelations are obtained by scaling arguments. Our predictions are in excellent agreement with numerical simulations.Comment: revtex, 5 pages, 5 figures, also available from http://arnold.uchicago.edu/~eb

    Particle Dynamics in a Mass-Conserving Coalescence Process

    Full text link
    We consider a fully asymmetric one-dimensional model with mass-conserving coalescence. Particles of unit mass enter at one edge of the chain and coalescence while performing a biased random walk towards the other edge where they exit. The conserved particle mass acts as a passive scalar in the reaction process A+A→AA+A\to A, and allows an exact mapping to a restricted ballistic surface deposition model for which exact results exist. In particular, the mass- mass correlation function is exactly known. These results complement earlier exact results for the A+A→AA+A\to A process without mass. We introduce a comprehensive scaling theory for this process. The exact anaytical and numerical results confirm its validity.Comment: 5 pages, 6 figure
    • …
    corecore