
A
PP

LI
ED

M
AT

H
EM

AT
IC

S

EC
O

LO
G

Y

Context-dependent interaction leads to emergent
search behavior in social aggregates
Colin Torneya,b,1, Zoltan Neufelda, and Iain D. Couzinb

aSchool of Mathematical Sciences and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland; and bDepartment of
Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved November 3, 2009 (received for review July 15, 2009)

Locating the source of an advected chemical signal is a com-
mon challenge facing many living organisms. When the advecting
medium is characterized by either high Reynolds number or high
Peclet number, the task becomes highly nontrivial due to the gener-
ation of heterogeneous, dynamically changing filamental concen-
trations that do not decrease monotonically with distance to the
source. Defining search strategies that are effective in these envi-
ronments has important implications for the understanding of ani-
mal behavior and for the design of biologically inspired technology.
Here we present a strategy that is able to solve this task without
the higher intelligence required to assess spatial gradient direction,
measure the diffusive properties of the flow field, or perform com-
plex calculations. Instead, our method is based on the collective
behavior of autonomous individuals following simple social inter-
action rules which are modified according to the local conditions
they are experiencing. Through these context-dependent interac-
tions, the group is able to locate the source of a chemical signal and
in doing so displays an awareness of the environment not present
at the individual level. This behavior illustrates an alternative path-
way to the evolution of higher cognitive capacity via the emergent,
group-level intelligence that can result from local interactions.

collective intelligence | olfactory search | cooperation

T hroughout the natural world, organisms are constantly faced
with the challenge of locating the resources required for their

survival. Often this means navigating their environment based on
spatiotemporally varying information such as advected chemical
cues, thermal gradients, or magnetic fields. It has been noted that
collective behavior can greatly assist animal navigation. One expla-
nation for this, known as the “many wrongs” principle (1), is that
inherent noise in the environment is dampened due to multiple
sampling by individuals within a group. A quantitative study of an
effect of this type was made by Grünbaum (2) and the benefits
of sociality clearly illustrated. However, this effect does not fully
capture the potential emergent properties of social aggregations,
which often display complex behaviors entirely absent at the indi-
vidual level (3–6). In this context, complex systems, such as fish
schools or animal herds, can be viewed as information-processing
entities with a collective awareness of their environment (7).
Understanding their capacity for performing search tasks will
have important consequences for the development of distributed
technologies, such as olfactory robot swarms, with applications
in the detection of explosives, landmines, or locating people in
search-and-rescue operations (8–10).

The use of chemical signals by organisms in order to gain
information about their environment is a ubiquitous behavior
commonly seen in aquatic animals or flying insects and observed
in a diverse range of species over a range of scales. For low
Reynolds number, viscous environments chemotaxis in organ-
isms such as Escherichia coli has been studied extensively in the
context of chemical signalling pathways (11, 12), the fluid mechan-
ics of locomotion (13), and optimal strategies (14). However,
when chemoattractants are advected by stochastically fluctuating,
chaotic flows, the mechanisms that allow organisms to respond
effectively to these signals are poorly understood. This issue has

been addressed previously, and algorithms based on a statistical
(15) or information-theoretic (16) approach have been developed.
Here we consider an approach that requires minimal cognitive or
sensing capacity on the part of an individual and instead relies on
interactions with conspecifics to generate a search response that
is effective in tracking an advected chemical filament. The key
mechanism, which may be generalized to other situations, lies in
the continual adjustment of an individual’s behavior, from being
more or less independent to entirely following its neighbors, as
a function of its level of confidence in its own current strategy.
Consequently, the leadership structure of the group changes, con-
tinuously adapting to the quality of local information available to
the members. For the search problem, the individual strategy is
the presumed direction toward the target along the concentration
filament, and confidence is assessed based on the changes in the
olfactory signal sensed along the trajectory in the recent past.

It is assumed that the transport properties of the flow consid-
ered exhibit characteristics observed in chaotic advection that lead
to thin filaments of chemical concentration in which the steepest
gradients are transverse to the direction of the source and density
is nonmonotonically decreasing with distance to the source loca-
tion (i.e. patches of high concentration are advected downstream).
The dynamics of the chemical field are represented by

∂C
∂t

+ vf · ∇C = S(r0) − bC, [1]

where S(r0) is a constant source at a point in space, b is a decay rate,
and vf is a stochastic velocity field with an imposed mean flow along
the y-axis. The velocity field is generated by a stochastic process
in Fourier space with a prescribed energy spectrum (17, 18) that
decays exponentially for large wavenumbers (see SI Appendix for
details).

Interaction Rules
Individuals in our model are advected by the flow and move at a
constant speed in a direction defined by their orientation

ṙi = vf (ri, t) + vspi. [2]

The flow is simulated in a domain of length L, and a time scale
unit for the model is selected by relating this length to a character-
istic velocity of the model; the absolute velocity of an individual if
it is perfectly aligned against the imposed mean flow. Therefore,
T = L/(vs − v̄fy); i.e., an individual moving against the mean flow
will cross the domain in unit time. All further parameters are then
defined in terms of these units.

The time evolution of the orientation vector results from inter-
action rules based on an abstraction of aggregation tendencies
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observed in biological systems. A range of theoretical models have
been introduced to describe the collective motion of animal groups
(see e.g., refs. 19–21); here we assume that the preferred direction
results from local alignment, repulsion, and attraction (5, 6, 22, 23).
However, we assume the interaction zone over which an individ-
ual responds to neighbors varies as a function of current local
conditions. This approach follows a similar concept outlined in
ref. 24, which demonstrated that simulated fish schools were able
to track regions of improved abiotic conditions by modifying reac-
tions to conspecifics and reducing speed when located in preferred
regions.

The direction of motion pi is modified on the basis of the posi-
tion and velocity of neighboring individuals. A desired direction
di is defined by three social interaction rules. In order to maintain
a minimum distance between neighbors, individuals move away
from those within a repulsion zone ZR (this precludes any other
behavioral response)

di = −
∑

j∈ZR

rj − ri

|rj − ri| . [3]

If no others are present within the repulsion zone, individuals
move toward those within an attraction zone ZA and seek to align
themselves with their neighbors within an orientation zone ZO

di =
∑

j∈ZA

rj − ri

|rj − ri| +
∑

j∈ZO

pj, [4]

where the attraction zone is typically assumed to be larger than the
alignment zone. Each individual turns toward di at a rate propor-
tional to the difference between the current and desired direction
with a maximum angular velocity defined by a parameter γ. If no
neighbors are present within the interaction zone, the direction
vector pi remains unchanged.

Context Dependence
In order to couple environment to behavior and create an effective
search algorithm, each individual varies the size of the interaction
zones of local alignment and attraction depending on the current
concentration value experienced. It should be noted that this is
not a directional measure, no gradient is detected, and flow veloc-
ity is ignored; therefore at the level of a single individual, a search
strategy does not exist.

The kernel of the model search behavior lies in the expansion
and contraction of the attraction and orientation zones depend-
ing on the local concentration experienced by an individual. The
radius of each zone is a function of a normalized individual concen-
tration parameter Ci(t) ∈ [0, 1] that measures the confidence in
the actual direction of motion based on the recently encountered
signal, defined as

Ci(t) = C(ri, t)
max
0<τ<t

[C(ri(t − τ), t − τ)e−τ/α] . [5]

The denominator is a record of the history of the individual’s tra-
jectory, where α controls the decay time and acts as a short-term
memory that allows individuals to assess the local concentration
in the context of recent experience only. Note that this type of
temporal comparison of sensed concentration values is also an
essential component of the well-known run-and-tumble model of
bacterial chemotaxis (25).

In our 2D model, an individual controls the radius of the attrac-
tion and orientation zone it responds to by applying a scaling
factor to the maximum size of these values (RA and RO, respec-
tively) dependent on the concentration parameter. The radius of
interaction for each response is then defined as (see Fig. 2B Inset)

RA(t) = (1 − Ci(t))2RA,max

RO(t) = sin2(πCi(t))RO,max. [6]

Although the exact functional form of this relation is reason-
ably arbitrary, the key behavioral response they represent can be
summarized as

• a sharp decrease in signal results in attraction only. An indi-
vidual then moves toward the center of the group within its
maximum interaction zone;

• a weakening signal results in moderate attraction and strong
alignment with neighbors. It is this intermediate response that
allows net movement along the filament and prevents a low
polarity swarm from forming;

• if an improving signal is being experienced, this is the optimal
direction, interaction zones are reduced to zero, all neighbors
are ignored, and current direction is maintained.

Qualitatively similar results to those presented here were obtained
by using different functions for each scaling factor provided the
dynamical responses listed were approximated.

By following the type of rules outlined, an individual acting
within a group is able to effectively track a filament and locate
the source of the signal, be it a nutrient source, a potential mate,
or the location of a suitable habitat. Sequential snapshots of the
search behavior being performed are shown in Fig. 1 for 60 indi-
viduals, and animations (Movies S1 and S2) are included in the
SI Appendix.

This model is not aimed to be an accurate representation of
the behavior of a particular species, and a range of other quali-
tatively similar interactions could be employed by different types
of animal groups and in various environments. For example, vary-
ing the turning rates or some weighting factors of the alignment,
attraction and actual direction as a function of some measure of
confidence can lead to qualitatively similar results so long as there
exists a local context dependence of the type we describe above.

Evidence that animals can, and do, employ rules of this type
comes from experiments involving schooling fish where observed
group-level behavior has been accurately modeled by implement-
ing variable, context-dependent interaction ranges. In ref. 26, it
was shown that fish appear to dynamically alter the range of
interactions with other individuals according to locally perceived
stimuli, such as increasing this range when alarm odor [indicative
of predation risk (27)] is detected. Experimental studies of fish
have also demonstrated that individuals will tend to restrict their
schooling tendency when they can gather reliable direct informa-
tion from the environment, such as the location of resources, but
increase their tendency to group with others when this information
is perceived to be unreliable or is scarce (28). Potential examples
are not limited to aquatic animals, and a similar mechanism has
been postulated as an explanation for the active recruitment of
others to food patches by the cliff swallow Hirundo pyrrhonota
(29). This hypothesis is supported by the increased frequency of
recruitment signals when food patches are localized and advected
by moderate wind speeds.

Our model captures behavioral interactions without specifying
the sensory modalities used and in some systems individuals may
alter their range of interaction by changing dynamically the dom-
inant modality used or by changing their response within one
or multiple modalities. The memory parameter that affects this
change can be either a physiological constraint (e.g., the biochem-
ical mechanism used by E. coli) and therefore optimized through
evolutionary processes or a variable decision process about how to
discount recent concentration values based on learned behavior.
Although the sensory modalities used have not yet been explored
in the examples concerning schooling fish, it is likely that vision
plays a key role and both lateral-line (water-pressure detection)
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Fig. 1. Snapshots of 60 individuals performing filament tracking at intervals of 0.375. Fifty-three successfully locate the source, repulsion zone size 2 × 10−3,
α = 12.5 × 10−3. Top view of filament and individuals is shown on left of each sequence, and on the right is the rotated concentration profile.

sensitivity and vision could be employed at different stages to
respond to conspecifics at different distances (30).

Several testable predictions can be made in order to demon-
strate a context-dependent mechanism in these example systems.
If experimentalists can modify the modalities used by organisms
(through genetic, pharmacological, or other means) such that
they cannot alter their range dynamically, we expect that there
will be characteristic and predictable deficiencies in response to
environmental stimuli of the type we discuss here. Furthermore,
existing experimental evidence demonstrates that the chemoat-
tractive capability of schooling fish does not linearly improve with
group size (31) as would be expected by the “many wrongs” princi-
ple, and it can therefore be hypothesized that this is a result of some
nontrivial interactions between individuals. Although experiments
that reproduce the predictions of the model are no guarantee that
the exact nature of the interactions are fully understood, a suc-
cess rate which is both a nonmonotonic function of group size and
has a minimum threshold below which success rate drops would
indicate that a higher-level functionality exists beyond the indi-
vidual. Examining this optimum group size for different signal
properties would also provide evidence for a group-level search
mechanism.

Group-Size Effects
To further quantify this behavior and understand the role of the
parameters in the model, we investigate first the effects of the
group size on the probability of successfully locating the source.
We refer here to group size as the number of individuals present
at the beginning of each simulation and ignore the potential for
populations to fracture as the search is performed. Numerical
simulations were performed with a given number of individuals
positioned on the chemical filament with a random initial orienta-
tion distributed around the half-circle pointing towards the source.
The number of individuals able to locate the source was recorded
and the probabilities of success calculated for varying parame-
ter values. It should be noted that due to the lack of significant
persistent gradient parallel to the desired direction, navigating a
filament upstream or downstream is almost equivalent; hence the

anisotropy of the initial conditions. However, it can be assumed
any organism wishing to track a filament will have rudimentary
knowledge of the flow direction, and this may even be passively
obtained through reorientation by the rheology of the flow.

Fig. 2A shows how success rate is affected for different group
sizes when the radius of the repulsion zone is varied. From this,
we can see that this distance is potentially more than an avoidance
mechanism, as it allows the group to act as an efficient network
of sensors independently sampling the spatiotemporally evolving
environment. To examine this further, we rescale the rates of suc-
cess in terms of the effective area occupied by the group. The
effective area is defined as the ideal exclusion area that an indi-
vidual wishes to maintain multiplied by the number of individuals
in the population. The result of this rescaling is included in Fig. 2B.
This figure shows the existence of an optimum area with a sharp
increase in success as this optimum is reached then a slow expo-
nential decay as the area is exceeded. These results suggest that
although the optimal area is invariant, maximum success is some-
what improved with larger numbers as large populations, tightly
packed together, are more robust and better able to track these
filaments.

However, this comes at a cost; our simulations show the percent-
age of the group that will arrive at the source on a successful trial
will reduce as total group size is increased (see SI Appendix). For
larger groups, there is a fission effect, and groups will split with
some losing the signal and moving out of range of the success-
ful group. To maintain group cohesion, the number of individuals
present cannot be too large. This may not be a disadvantage in
some robotic search applications where the proportion of the
group reaching the target is unimportant.

The Role of Memory
The decay rate α of the stored concentration value (with which
current values are compared) represents the length of an indi-
vidual’s memory. This memory allows comparison of experienced
concentration levels and the assessment of the current trajectory.
The value of α defines a time scale for the memory decay, and this
effectively controls the sensitivity to environmental conditions and
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Fig. 2. Effect of group size and group area on probability of success.
(A) Probability of success as a function of group size. Lines represent vary-
ing repulsion zone size. Green dash, 1 × 10−3; red solid, 2 × 10−3; blue dot,
3 × 10−3; black dot-dash, 4 × 10−3; purple dot-small dash, 5 × 10−3. (B) Prob-
ability of success as a function of group area. Green plus sign, 1 × 10−3; red x,
2×10−3; blue asterisk, 3×10−3; black square (outline), 4×10−3; purple square
(solid), 5×10−3. (Inset) Interaction zone sizes as a function of Ci(t). Blue dash,
attraction zone; red solid, orientation zone; black dash, repulsion zone.

represents an individual level parameter that can be tuned through
evolution or experience to affect the success of the group.

In the flow regime we are considering, the filamental structure
of the advected chemical signal means that the largest gradient is
transverse to the desired direction. The memory parameter there-
fore controls how responsive an individual is to a reduction in
signal strength as it moves towards the edges of the filament. To
place the time scale of the memory in the context of the proper-
ties of the signal, we approximate the memory parameter required
to effectively trace the edges of the filament. By measuring the
average width of the filament and assuming its profile follows
a Gaussian distribution, we calculate the time taken to traverse
one standard deviation travelling at 45◦ to the parallel direction
as ≈0.0125. As the role of memory is to allow an individual to
determine if conditions are improving or deteriorating, this value
defines a memory length for which it can be assumed that an indi-
vidual is able to detect that it is moving toward the edges of the
filament.

Decay rates which are greater than ≈0.0125 lead to less respon-
siveness and more binary behavior; individuals ignore others when
experiencing any concentration value and then attract when the fil-
ament is lost. In the limiting case of no memory, this corresponds
to a low-polarization swarm as seen in groups of mosquitoes or
midges. In this region of parameter space there is no net motion,

but the group is able to maintain its position centered on the plume
for long periods.

In the other extreme, high values of α lead to fluctuations in
concentration having a larger impact on success rates due to a
weakening responsiveness to the decay of the filament perpen-
dicular to the desired direction. Effectively, individuals that have
experienced a high-concentration parcel are subsequently less
able to accurately respond to the horizontal profile of the fila-
ment within the time frame defined by the decay rate. The negative
impact of longer memory is a result of intermittent fluctuations in
the signal and is therefore a weak effect, meaning that once the
required memory is reached, the success rate declines slowly as it
is increased.

To examine the intermediate regime, the value of α was varied
and success rates recorded for different group sizes. These results
are shown in Fig. 3A, from which it is clear that optimum memory
length is dependent on group size. Although the global optimum
value corresponds to the value required to detect the edges of
the filament while also being able to forget high-concentration
patches, different group sizes do not all share this same optimum.
The reason for this can be found in the tradeoff between explo-
ration and exploitation of the signal where exploration means the
effective sampling of the signal and exploitation corresponds to

Fig. 3. Effects of group size and memory length. (A) Probability of suc-
cess as a function of group size for various memory lengths. Green dash,
α = 25 × 10−3; red solid, α = 12.5 × 10−3; blue dot, α = 2.5 × 10−3; black dot-
dash, α = 1.25 × 10−3; purple dash-dot, α = 0.5 × 10−3. (B) Group polarity as
a function of group size. Legend as in A. (Inset) Mean nearest-neighbor dis-
tance. Legend as in A. The black thin-dashed line represents repulsion radius.
These values represent ensemble average values, time averaged within and
across multiple simulation instances.
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net motion toward its source. We illustrate this by measuring two
properties of the group dynamics, the average nearest neighbor
distance

〈Δr〉 = 1
N

N∑

i=1

min
j

(|rj(t) − ri(t)|), [7]

and the average group polarity

〈p〉 = 1
N

∣∣∣∣∣

N∑

i=1

pi(t)

∣∣∣∣∣ , [8]

which are measured numerically and shown in Fig. 3B. It can be
seen the fast decay of memory (which causes more asocial behavior
until concentration is greatly reduced) leads to consistently lower
polarity and also for smaller groups to be less-densely packed. For
smaller populations, becoming too sensitive to their environment
leads to a more compact and highly polarized grouping which is
less stable and is more likely to lose track of the filament when
required to respond quickly to curves generated by vortices in the
flow. This effect may be compensated for by decreasing α, which
results in groups covering a larger spatial area, lower alignment
and a reduced tendency to collectively lose the filament. The polar-
ity of the group defines the speed at which it will travel toward the
source, but the optimum value is a tradeoff between speed and
exploration of the surrounding area, which enables the group as a
whole to move in different directions when necessary.

Discussion
Our model illustrates how simple adaptive social interactions can
lead to cooperative behavior that, in this case, produces an emer-
gent group-level search. By modifying their behavior based on
local conditions, autonomous individuals enable the group to col-
lectively act as a spatial nonlocal gradient sensor that is able to
track a chemical signal and locate its source. It has previously
been shown how small numbers of individuals can control decision
making (6) and lead groups in a given direction. Here the context-
dependent interactions mean leaders are dynamically changing
and automatically selected. As these leaders are those that are
experiencing increases in local concentration, group direction is
toward the source.

Although we have chosen to study an advection-dominated
regime where chaotic dynamics lead to patchy, heterogeneous
information, the mechanism described here is equally applicable
to diffusion-dominated environments where concentration values
increase smoothly and steadily as their source is approached. In
this case, group dynamics can be easily seen to follow a trajectory
toward the source; however, asocial strategies such as a biased
random walk (32) are equally effective in these conditions, and
social behavior is redundant (even maladaptive due to effects of
competition). The interesting case from both an evolutionary and
technological perspective is when the nature of the environment
renders individual strategies ineffective.

In the case of the model presented here, the center of the fila-
ment can be considered as an unstable position for any organism to
maintain. That the flow also advects the individuals in our model
is both beneficial, as it aids in following the signal, and disadvan-

tageous, as a particle is rapidly moved away if the signal is lost.
A strategy based on temporal sampling and biased random turns
in these environments is ineffective, as once the signal is lost, it
becomes highly difficult to relocate. Responding to the edges of
the filament through a counter-turning mechanism may be effec-
tive and is observed in nature (33) but requires spatially separate
sensors to accurately determine the turning speed required (34).

The advantage of sociality therefore lies in two factors. Firstly
the stability it provides in maintaining position on the signal;
although lone individuals are easily dislodged and moved away
from the signal as a result of exponentially diverging trajectories,
collective interactions anchor the group to the filament. Secondly,
the group is able to sample over a much larger area simultaneously
and, due to the context-dependent interactions, makes a consen-
sus decision based on these samples. The result of these factors is
the smoothing out of fluctuations in the chemical concentration,
a comparison of different trajectories without losing track of the
signal and the automatic selection of the optimal path. The para-
meter values and the exact form of the response functions could be
tuned further by some evolutionary selection or learning process
to produce optimal behavior adapted to the specific characteristics
of the environment.

The recent study of animal groups as complex adaptive sys-
tems has shown that they are able to perform sophisticated tasks
through simple local interactions. These distributed systems are
topics of considerable interest in the robotics community (35–37)
because they have many advantages over the traditional paradigm
of centralized control, notably the absence of communication time
(in autonomous systems), inherent robustness (any given com-
ponent is expendable), and cost effectiveness as large numbers
of simple robotic components can be manufactured efficiently.
In the traditional sense, the results outlined in this paper may
be applied to robotic search strategies but may also be applied
to more abstract search problems in the domain of genetic algo-
rithms, e.g., particle swarm optimization, as our model illustrates
mechanisms of this type can be effective even in the absence of
global information.

Materials and Methods
The isotropic flow field was generated in Fourier space by a stochastic
Ornstein–Uhlenbeck process with an exponentially decaying energy spectrum
and the length scale of the highest energy modes set to 0.31. Root mean
squared velocity was 0.25 and a mean flow of 0.6 was imposed in a constant
direction. Advection of the chemical signal was performed by using a semi-
Lagrangian method with a gridsize of 512. Particle positions were updated
by using a second-order scheme with positions and velocities of neighbors
updated once per time step. Particle speed vs = 1.6, turning rate γ = 140
(radians), dt = 0.00025, maximum orientation radius RO,max = 0.075, maxi-
mum attraction radius RA,max = 0.125. Success rates were obtained by using
1,000 trials and recording number of individuals reaching within a distance
of 0.025 of the source location. Individuals were initially located in a ball cen-
tered on the filament at a distance of 0.8 from the source. For further details
of numerical methods, see the SI Appendix.
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Supporting Information

Numerical methods
The following details the methodology behind the simulation of a
velocity field which displays the characteristics of turbulent flow fol-
lowing an approach termed synthetic turbulence [1, 2, 3, 4], the cou-
pling of this flow model to a semi-Lagrangian scheme [5] for the
advection of the chemical signal, and the numerical methods which
simulate the behavioral rules of the self-propelled particles.

The method used for the stochastic flow is based on a representa-
tion of the statistical properties of the fluid dynamics. The aim of this
method is to generate a statistically stationary, homogeneous, and
isotropic two-dimensional stochastic flow with zero mean velocity
and a well-defined energy spectrum.

If a two-dimensional flow is divergence free,∇·v = 0, it can be
represented by a stream function, ψ where

v =

„
∂ψ

∂y
,−∂ψ

∂x

«
. (1)

The real-valued, scalar field ψ completely defines the flow field, with
the streamlines of the flow corresponding to the contour lines of ψ.
To ensure the flow is homogeneous and stationary the stream function
is taken to be a solution to the stochastic partial differential equation

∂ψ

∂t
= ν∇2ψ +

p
ξ
∂W

∂t
(2)

where W is a coloured noise [6] with a prescribed spectrum which
defines the energy spectrum of the flow. The parameter ν acts as vis-
cosity and dampens the fluctuations in the stream function, while ξ
defines the magnitude of the noise term.

As W is coloured noise it can be defined as a Fourier series by

W (x, t) =
X
k∈K

p
λkŴk(t)eikx, K = 2πZ2 (3)

where λk is the energy for the given Fourier mode of the noise (we
take the square root for convenience later when this term acts as a
variance), and Ŵk is a sequence of Brownian motions, complex val-
ued and with the constraint that Ŵk = Ŵ ∗−k to ensure the stream
function remains real valued. The use of x in this equation and those
that follow refers to x/L where L is the domain size. Taking the
series expansion of ψ and incorporating Eqn. 3 into Eqn. 2 leaves

X
k∈K

∂ψ̂k
∂t

eikx = −ν
X
k∈K

|k|2ψ̂keikx +
X
k∈K

p
ξλk

∂Ŵk

∂t
eikx (4)

As this is a linear equation each Fourier mode can be solved inde-
pendently and this leads directly to a system of Ornstein-Uhlenbeck
equations of the form

dψ̂k = −ν|k|2ψ̂kdt+
p
ξλkdŴk. (5)

The solution to this can be obtained exactly as

ψ̂k(t) = ψ̂k(0)e−ν|k|
2t +

Z t

0

p
ξλke

ν|k|2(s−t)dŴk(s) (6)

From the theory of stochastic integration [7] the integral in Eqn. 6 is
a Gaussian process with mean zero and variance given by

ξλk

Z t

0

e2ν|k|2(s−t)ds =
ξλk

2ν|k|2
“

1− e−2ν|k|2t
”
. (7)

Each Fourier mode of ψ can now be evolved in discrete time steps
from a given initial condition by the formula

ψ̂k(t+ ∆t) = ψ̂k(t)e−ν|k|
2∆t +

s
ξλk

2ν|k|2
`
1− e−2ν|k|2∆t

´
Zk

(8)
where Zk are random numbers sampled from a N(0, 1) distribution
and subject to the constraint Zk = Z∗−k. We take as an initial condi-
tion the steady state by letting t→∞ and sampling according to the
uncorrelated variance.

The resulting flow field is modified by introducing a constant
velocity along the vertical direction and then coupled to a semi-
Lagrangian advection scheme (see [8] for detailed methodology)
which advects a decaying chemical field entered into the system at
a constant rate from a point in the domain. A grid size of 512x256
was used and simulations were performed using a parallel MPI algo-
rithm.

The final stage for the numerics involves the simulation of self-
propelled particles which are advected by the flow and orient them-
selves depending on local conditions. Individuals firstly assess the
concentration parameter Ci(t) which is a function of the instanta-
neous local concentration and a stored memory value which decays
with time. At each timestep the desired vector di is calculated with a
naive order N2 method using behavioral rules based on the interac-
tion zones defined by Ci(t).

In two-dimensions both the current orientation vector pi and the
desired direction di can be represented by angles denoted by θ and
φ respectively, where −π < θ, φ < π. The equations of motion for
individual i are then defined by

ẋ = Vfx + Vs cos(θ)

ẏ = Vfy + Vs sin(θ)

θ̇i = γ (φ− θ) (9)

where (φ− θ) is rotated clockwise or counterclockwise by 2π to en-
sure it lies within the region −π ≤ (φ− θ) ≤ π, Vfx and Vfy are
the x and y components of the carrier flow, Vs is the swimming speed
and γ controls the maximum turning rate.

The equations of motion are integrated using the second order
modified Euler’s method.
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Fig. 1. Conditional success rate. Probability of successfully locating the source when at least one other member has been successful as a function of group size.
Lines represent varying repulsion zone size, green dash 1 × 10−3, red solid 2 × 10−3, blue dot 3 × 10−3, black dot-dash 4 × 10−3, purple dot-small dash
5× 10−3.
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Movie S1 (AVI).

http://www.pnas.org/content/vol106/issue2009/images/data/0907929106/DCSupplemental/SM1.avi


Movie S2 (AVI).

http://www.pnas.org/content/vol106/issue2009/images/data/0907929106/DCSupplemental/SM2.avi
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