14 research outputs found

    Validation of a high resolution version of the regional climate model RegCM3 over the Carpathian Basin

    Get PDF
    This paper presents a validation study for a high-resolution version of the Regional Climate Model version 3 (RegCM3) over the Carpathian basin and its surroundings. The horizontal grid spacing of the model is 10 km—the highest reached by RegCM3. The ability of the model to capture temporal and spatial variability of temperature and precipitation over the region of interest is evaluated using metrics spanning a wide range of temporal (daily to climatology) and spatial (inner domain average to local) scales against different observational datasets. The simulated period is 1961–90. RegCM3 shows small temperature biases but a general overestimation of precipitation, especially in winter; although, this overestimate may be artificially enhanced by uncertainties in observations. The precipitation bias over the Hungarian territory, the authors’ main area of interest, is mostly less than 20%. The model captures well the observed late twentieth-century decadal-to-interannual and interseasonal variability. On short time scales, simulated daily temperature and precipitation show a high correlation with observations, with a correlation coefficient of 0.9 for temperature and 0.6 for precipitation. Comparison with two Hungarian station time series shows that the model performance does not degrade when going to the 10-km gridpoint scale. Finally, the model reproduces the spatial distribution of dry and wet spells over the region. Overall, it is assessed that this high-resolution version of RegCM3 is of sufficiently good quality to perform climate change experiments over the Carpathian region—and, in particular, the Hungarian territory—for application to impact and adaptation studies

    The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble

    Get PDF
    Four regional climate models (RCMs) were adapted in Hungary for the dynamical downscaling of the global climate projections over the Carpathian Basin: (i) the ALADIN-Climate model developed by Météo France on the basis of the ALADIN short-range modelling system; (ii) the PRECIS model available from the UK Met Office Hadley Centre; (iii) the RegCM model originally developed at the US National Center for Atmospheric Research, is maintained at the International Centre for Theoretical Physics in Trieste; and (iv) the REMO model developed by the Max Planck Institute for Meteorology in Hamburg. The RCMs are different in terms of dynamical model formulation, physical parameterisations; moreover, in the completed simulations they use different spatial resolutions, integration domains and lateral boundary conditions for the scenario experiments. Therefore, the results of the four RCMs can be considered as a small ensemble providing information about various kinds of uncertainties in the future projections over the target area, i.e., Hungary. After the validation of the temperature and precipitation patterns against measurements, mean changes and some extreme characteristics of these patterns (including their statistical significance) have been assessed focusing on the periods of 2021–2050 and 2071–2100 relative to the 1961–1990 model reference period. The ensemble evaluation indicates that the temperature-related changes of the different RCMs are in good agreement over the Carpathian Basin and these tendencies manifest in the general warming conditions. The precipitation changes cannot be identified so clearly: seasonally large differences can be recognised among the projections and between the two periods. An overview is given about the results of the mini-ensemble and special emphasis is put on estimating the uncertainties in the simulations for Hungary

    The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble

    Get PDF
    Four regional climate models (RCMs) were adapted in Hungary for the dynamical downscaling of the global climate projections over the Carpathian Basin: (i) the ALADIN-Climate model developed by Météo France on the basis of the ALADIN short-range modelling system; (ii) the PRECIS model available from the UK Met Office Hadley Centre; (iii) the RegCM model originally developed at the US National Center for Atmospheric Research, is maintained at the International Centre for Theoretical Physics in Trieste; and (iv) the REMO model developed by the Max Planck Institute for Meteorology in Hamburg. The RCMs are different in terms of dynamical model formulation, physical parameterisations; moreover, in the completed simulations they use different spatial resolutions, integration domains and lateral boundary conditions for the scenario experiments. Therefore, the results of the four RCMs can be considered as a small ensemble providing information about various kinds of uncertainties in the future projections over the target area, i.e., Hungary. After the validation of the temperature and precipitation patterns against measurements, mean changes and some extreme characteristics of these patterns (including their statistical significance) have been assessed focusing on the periods of 2021–2050 and 2071–2100 relative to the 1961–1990 model reference period. The ensemble evaluation indicates that the temperature-related changes of the different RCMs are in good agreement over the Carpathian Basin and these tendencies manifest in the general warming conditions. The precipitation changes cannot be identified so clearly: seasonally large differences can be recognised among the projections and between the two periods. An overview is given about the results of the mini-ensemble and special emphasis is put on estimating the uncertainties in the simulations for Hungary

    Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation

    Get PDF
    The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi

    Spatial pattern of true bugs (Heteroptera) in heterogeneous grassland — Preliminary results

    No full text
    The present study was carried out at a dune slack meadow near Mórahalom town in the Southern part of the Great Hungarian Plain. The area of the grassland is approximately 840,000 m 2 . The vegetation is mosaic-like in accordance with the variable microrelief and water content. The lower part of the grassland consists of various types of saltmarshes and wet meadows and at the upper microrelief, Pannonic sand steppe patches occur. True bug assemblages were sampled at 16 patches using 5×50 sweeps at each sampling site. The sampling was repeated three times in both 2007 and 2008. The area, the perimeter, the shape index of the sampled patches as well as the diversity of the surrounding patches were assessed as “landscape parameters”. The plant species number and diversity of the sampled patches were estimated from the data of 5×5 m coenological quadrats. Altogether 66,087 adult individuals belonging to 153 species were collected. The ordination methods showed that the true bug assemblages of the sampling patches differ from each other in accordance with the vegetation type. These assemblages differed in their species composition and diversity as well as in their assemblage structure. The results suggested that the vegetation type based on plant species composition determined the true bug assemblages
    corecore