8 research outputs found

    Antibody-mediated initiation and lymphocyte-targeting therapies in CNS demyelinating disease

    Get PDF
    Multiple sclerosis is inflammatory central nervous system disease, characterised by areas of demyelination and axonal loss. The pathogenic mechanism behind the disease still remains unknown, however it is thought to be mainly T cell-mediated. Notwithstanding this, B cells have increasingly been recognized as key mediators of disease. This work focuses on three distinct characteristics of MS pathology in the animal model experimental autoimmune encephalomyelitis (EAE). The first project focused on establishing inhibition of Bruton´s tyrosine kinase (BTK) as a novel therapeutic approach. BTK is centrally placed in B cell receptor (BCR) signalling. In a B cell-mediated EAE model, induced by injection of MOG protein, we observed that evobrutinib, a novel BTK inhibitor, dose-dependently reduced clinical disease. Evobrutinib inhibited BCR-mediated phenotypic maturation of B cells from follicular (FO) II to FO I and reduced activation of B cells and T cells. It diminished calcium mobilization and cytokine production after BCR stimulation in murine and human B cells. Investigating MS patients, we did not observe a difference in B cell frequency, BTK expression or phosphorylation of BTK after BCR stimulation. Taken together, we demonstrated that BTK inhibition (BTKi) is a promising new strategy to control pathogenic B cell activity in a model of CNS autoimmunity. The second project investigated the effects of long-term high dose vitamin D supplementation on the peripheral immune system and EAE severity. We observed clinical and histological deterioration of EAE after long-term high dose supplementation of vitamin D. Further investigations traced this effect to a secondary hypercalcemia, which in contrast to vitamin D, increased the activation and differentiation of T cells both in vitro and in vivo. Since MS patients are often continuously supplemented with vitamin D over long periods of time, our work cautions patients and clinicians to be attentive of potential side effects by hypercalcemia. The third project focused on antibodies in the initiation of disease. We investigated the capacity of myelin-reactive antibodies to facilitate encephalitogenic responses via opsonisation of CNS antigen. We observed that antibody production in the absence of B cells was sufficient to induce EAE in a transgenic mouse model. Additionally, adoptive transfer of antibodies in mice containing MOG-specific T cells induced disease via otherwise unresponsive myeloid antigen-presenting cells (APCs). MOG-targeting antibodies enabled Fcreceptor (FcR) mediated recognition and phagocytosis in in vitro differentiated macrophages. Additionally, antibody preparations from neuromyelitis optica patients positive for MOG antibodies similarly facilitated recognition by myeloid APCs. These results establish opsonisation of CNS antigen by specific antibodies as a novel mechanism to trigger CNS demyelination.2020-07-0

    Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease

    No full text
    Anti-CD20-mediated B-cell depletion effectively reduces acute multiple sclerosis (MS) flares. Recent data shows that antibody-mediated extinction of B cells as a lasting immune suppression, harbors the risk of developing humoral deficiencies over time. Accordingly, more selective, durable and reversible B-cell-directed MS therapies are needed. We here tested inhibition of Bruton's tyrosine kinase (BTK), an enzyme centrally involved in B-cell receptor signaling, as the most promising approach in this direction. Using mouse models of MS, we determined that evobrutinib, the first BTK inhibiting molecule being developed, dose-dependently inhibited antigen-triggered activation and maturation of B cells as well as their release of pro-inflammatory cytokines. Most importantly, evobrutinib treatment functionally impaired the capacity of B cells to act as antigen-presenting cells for the development of encephalitogenic T cells, resulting in a significantly reduced disease severity in mice. In contrast to anti-CD20, BTK inhibition silenced this key property of B cells in MS without impairing their frequency or functional integrity. In conjunction with a recent phase II trial reporting that evobrutinib is safe and effective in MS, our mechanistic data highlight therapeutic BTK inhibition as a landmark towards selectively interfering with MS-driving B-cell properties

    Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen

    No full text
    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders
    corecore