749 research outputs found

    The radial abundance gradient of oxygen towards the Galactic anticentre

    Get PDF
    We present deep optical spectroscopy of eight HII regions located in the anticentre of the Milky Way. The spectra were obtained at the 10.4m GTC and 8.2m VLT. We determined Te([NII]) for all objects and Te([OIII]) for six of them. We also included in our analysis an additional sample of 13 inner-disc Galactic Hii regions from the literature that have excellent T_e determinations. We adopted the same methodology and atomic dataset to determine the physical conditions and ionic abundances for both samples. We also detected the CII and OII optical recombination lines in Sh 2-100, which enables determination of the abundance discrepancy factor for this object. We found that the slopes of the radial oxygen gradients defined by the HII regions from R_25 (= 11.5 kpc) to 17 kpc and those within R_25 are similar within the uncertainties, indicating the absence of flattening in the radial oxygen gradient in the outer Milky Way. In general, we found that the scatter of the O/H ratios of Hii regions is not substantially larger than the observational uncertainties. The largest possible local inhomogeneities of the oxygen abundances are of the order of 0.1 dex. We also found positive radial gradients in Te([O III]) and Te([N II]) across the Galactic disc. The shapes of these temperature gradients are similar and also consistent with the absence of flattening of the metallicity distribution in the outer Galactic disc.Comment: 20 pages, 11 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Interacting photon-baryon fluid, warm dark matter and the first acoustic peak

    Get PDF
    The Reduced Relativistic Gas (RRG) model was introduced by A. Sakharov in 1965 for deriving the cosmic microwave background (CMB) spectrum. It was recently reinvented by some of us to achieve an interpolation between the radiation and dust epochs in the evolution of the Universe. This model circumvents the complicated structure of the Boltzmann-Einstein system of equations and admits a transparent description of warm-dark-matter effects. It is extended here to include, on a phenomenological basis, an out-of-equilibrium interaction between radiation and baryons which is supposed to account for relevant aspects of pre-recombination physics in a simplified manner. Furthermore, we use the tight-coupling approximation to explore the influence of both this interaction and of the RRG warmness parameter on the anisotropy spectrum of the CMB. The predictions of the model are very similar to those of the {\Lambda}CDM model if both the interaction and the dark-matter warmness parameters are of the order of 10410^{-4} or smaller. As far as the warmness parameter is concerned, this is in good agreement with previous estimations on the basis of results from structure formation.Comment: 10 pages and 4 figure

    Carbon and oxygen in HII regions of the Magellanic Clouds: abundance discrepancy and chemical evolution

    Full text link
    We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cloud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 8 table

    Carbon radio recombination lines from gigahertz to megahertz frequencies towards Orion A

    Get PDF
    Context. The combined use of carbon radio recombination lines (CRRLs) and the 158 μ\mum-[CII] line is a powerful tool for the study of the energetics and physical conditions (e.g., temperature and density) of photodissociation regions (PDRs). However, there are few observational studies that exploit this synergy. Aims. Here we explore the relation between CRRLs and the 158 μ\mum-[CII] line in light of new observations and models. Methods. We present new and existing observations of CRRLs in the frequency range 0.15--230 GHz with ALMA, VLA, the GBT, Effelsberg 100m, and LOFAR towards Orion~A (M42). We complement these observations with SOFIA observations of the 158 μ\mum-[CII] line. We studied two PDRs: the foreground atomic gas, known as the Veil, and the dense PDR between the HII region and the background molecular cloud. Results. In the Veil we are able to determine the gas temperature and electron density, which we use to measure the ionization parameter and the photoelectric heating efficiency. In the dense PDR, we are able to identify a layered PDR structure at the surface of the molecular cloud to the south of the Trapezium cluster. There we find that the radio lines trace the colder portion of the ionized carbon layer, the C+^{+}/C/CO interface. By modeling the emission of the 158158~μ\mum-[CII] line and CRRLs as arising from a PDR we derive a thermal pressure >5×107>5\times10^{7} K cm3^{-3} and a radiation field G0105G_{0}\approx10^{5} close to the Trapezium. Conclusions. This work provides additional observational support for the use of CRRLs and the 158 μ\mum-[CII] line as complementary tools to study dense and diffuse PDRs, and highlights the usefulness of CRRLs as probes of the C+^{+}/C/CO interface.Comment: 18 pages, 16 figures, accepted for publication in A&
    corecore