451 research outputs found

    When is a space Menger at infinity?

    Full text link
    [EN] We try to characterize those Tychonoff spaces X such that βXX\beta X\setminus X has the Menger property.The first author was partially supported by FAPESP (2013/05469-7) and by GNSAGA.Aurichi, LF.; Bella, A. (2015). When is a space Menger at infinity?. Applied General Topology. 16(1):75-80. https://doi.org/10.4995/agt.2015.3244SWORD7580161Aurichi, L. F., & Bella, A. (2015). On a game theoretic cardinality bound. Topology and its Applications, 192, 2-8. doi:10.1016/j.topol.2015.05.068G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733.A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.Telgársky, R. (1984). On games of Topsoe. MATHEMATICA SCANDINAVICA, 54, 170. doi:10.7146/math.scand.a-12050F. Topsoe, Topological games and Cech-completeness, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613-63

    Nonadditive entropy and nonextensive statistical mechanics - Some central concepts and recent applications

    Full text link
    We briefly review central concepts concerning nonextensive statistical mechanics, based on the nonadditive entropy Sq=k1ipiqq1(qR;S1=kipilnpi)S_q=k\frac{1-\sum_{i}p_i^q}{q-1} (q \in {\cal R}; S_1=-k\sum_{i}p_i \ln p_i). Among others, we focus on possible realizations of the qq-generalized Central Limit Theorem, including at the edge of chaos of the logistic map, and for quasi-stationary states of many-body long-range-interacting Hamiltonian systems.Comment: 15 pages, 9 figs., to appear in Journal of Physics: Conf.Series (IOP, 2010

    Origin of the dispersion limit in the preparation of Ni(Co)Mo/Al2O3 and Ni(Co)Mo/TiO2 HDS oxidic precursors

    Get PDF
    Conventional alumina and titania oxidic precursors have been characterized by Raman spectroscopy after maturation, drying and calcination. The evolution of the impregnating solution has been followed and the nature of the precipitates has been determined. After impregnation of alumina 6molybdoaluminate entities (well dispersed or not) are characterized for both the NiMo and CoMo based solids. At high Mo loading, the formation of a CoMo oxyhydroxide that yields bulk cobalt molybdate upon calcination is also observed. In counterpart on TiO2 surface of the NiMo precursor, the formation of 6molybdonickelate leading to bulk nickel molybdate upon calcination is observed. The formation of well defined phases i.e. CoMoO4 and NiMoO4 was not observed on respectively titania and alumina supports, but well dispersed polyoxomolybdate was characterized at the same Mo loading

    Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations

    Get PDF
    Consider a large Boolean network with a feed forward structure. Given a probability distribution on the inputs, can one find, possibly small, collections of input nodes that determine the states of most other nodes in the network? To answer this question, a notion that quantifies the determinative power of an input over the states of the nodes in the network is needed. We argue that the mutual information (MI) between a given subset of the inputs X = {X_1, ..., X_n} of some node i and its associated function f_i(X) quantifies the determinative power of this set of inputs over node i. We compare the determinative power of a set of inputs to the sensitivity to perturbations to these inputs, and find that, maybe surprisingly, an input that has large sensitivity to perturbations does not necessarily have large determinative power. However, for unate functions, which play an important role in genetic regulatory networks, we find a direct relation between MI and sensitivity to perturbations. As an application of our results, we analyze the large-scale regulatory network of Escherichia coli. We identify the most determinative nodes and show that a small subset of those reduces the overall uncertainty of the network state significantly. Furthermore, the network is found to be tolerant to perturbations of its inputs

    Magnetic structural effect in nonequilibrium defective solids

    Full text link
    Scientific study of the effect of structural memory of nonequilibrium defective solids about the processing in magnetic field (the magnetic structural effect (MSE) was continued in this paper. The study was aimed to reveal the universal nature of the MSE, which was investigated in several new nonequilibrium defective solids. The results of investigation of the processing in the vortical magnetic field (PVMF) and its effect on the structure of the natural magnetite Fe3O4 and the SnO2 films were presented. The methods of Mössbauer and X-ray spectroscopy were used. The PVMF reduction of a defectiveness of Fe3O4 structure in the magnetite was detected. The MSE was also observed in the Mössbauer spectra of diamagnetic tin oxide SnO2 films after the PVMF. One of the possible explanations of the MSE was given in the paper.Comment: 6 pages, 6 figures, 3 table

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts

    Get PDF
    The aim of this paper is to study the formation of carbon nanotubes (CNTs) from different Fe/MgO oxide powders that were prepared by combustion synthesis and characterized in detail in a companion paper. Depending on the synthesis conditions, several iron species are present in the starting oxides including Fe2+ ions, octahedral Fe3+ ions, Fe3+ clusters, and MgFe2O4-like nanoparticles. Upon reduction during heating at 5 °C/min up to 1000 °C in H2/CH4 of the oxide powders, the octahedral Fe3+ ions tend to form Fe2+ ions, which are not likely to be reduced to metallic iron whereas the MgFe2O4-like particles are directly reduced to metallic iron. The reduced phases are R-Fe, Fe3C, and ç-Fe-C. Fe3C appears as the postreaction phase involved in the formation of carbon filaments (CNTs and thick carbon nanofibers). Thick carbon nanofibers are formed from catalyst particles originating from poorly dispersed species (Fe3+ clusters and MgFe2O4-like particles). The nanofiber outer diameter is determined by the particle size. The reduction of the iron ions and clusters that are well dispersed in the MgO lattice leads to small catalytic particles (<5 nm), which tend to form SWNTS and DWNTs with an inner diameter close to 2 nm. Well-dispersed MgFe2O4-like particles can also be reduced to small metal particles with a narrow size distribution, producing SWNTs and DWNTs. The present results will help in tailoring oxide precursors for the controlled formation of CNTs

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti
    corecore