2,378 research outputs found
Can diversity promote trust? Neighbourhood context and trust in the police in Northern Ireland
The association between trust in the police and neighbourhood context is well known. Police seem to enjoy more trust when community settings are perceived as orderly, cohesive and well-functioning, and trust seems to be lower when order and cohesion seem attenuated or under threat. Yet, little attention has been paid to the association between neighbourhood diversity and trust in the police. Allport's contact hypothesis suggests that because diversity increases intergroup contact and thus a sense of cohesion, it may promote trust in the police. We use data from a nationally representative survey conducted in 2014, combined with Census and other local-area data, to explore the association between ethno-religious diversity and trust in the Police Service of Northern Ireland. We find that trust is higher in more diverse areas, primarily because Catholics living in such areas report significantly higher levels of trust than their counterparts living in less diverse areas. We interpret these results in light of what policing means in contemporary Northern Ireland, almost two-decades after the country's landmark reform of policing began
Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions
Cloud condensation nucleus (CCN) experiments were carried out for malonic acid, succinic acid, oxalacetic acid, DL-malic acid, glutaric acid, DL-glutamic acid monohydrate, and adipic acid, using both water and methanol as atomization solvents, at three operating supersaturations (0.11%, 0.21%, and 0.32%) in the Caltech three-column CCN instrument (CCNC3). Predictions of CCN behavior for five of these compounds were made using the Aerosol Diameter Dependent Equilibrium Model (ADDEM). The experiments presented here expose important considerations associated with the laboratory measurement of the CCN behavior of organic compounds. Choice of atomization solvent results in significant differences in CCN activation for some of the compounds studied, which could result from residual solvent, particle morphology differences, and chemical reactions between the particle and gas phases. Also, significant changes in aerosol size distribution occurred after classification in a differential mobility analyzer (DMA) for malonic acid and glutaric acid. Filter analysis of adipic acid atomized from methanol solution indicates that gas-particle phase reactions may have taken place after atomization and before the methanol was removed from the sample gas stream. Careful consideration of these experimental issues is necessary for successful design and interpretation of laboratory CCN measurements
Recommended from our members
The effects of landscape modifications on the long-term persistence of animal populations
Background: The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial
importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is
usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in
experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and
ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a
ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population
implications of experimental modifications of landscape configuration and composition.
Methodology/Principal Findings: Starting with a real agricultural landscape, we progressively reduced landscape
complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the
size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations
on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after
disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species
whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased
recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species
that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations
took place.
Significance: Traditional approaches to the management and conservation of populations use either classical methods of
population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology,
which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we
show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and
non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not
detected by standard population viability analyses
- …