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Abstract

We define several notions of singular set for Type I Ricci flows and show that they
all coincide. In order to do this, we prove that blow-ups around singular points converge
to nontrivial gradient shrinking solitons, thus extending work of Naber [15]. As a by-
product we conclude that the volume of a finite-volume singular set vanishes at the
singular time.

We also define a notion of density for Type I Ricci flows and use it to prove a
regularity theorem reminiscent of White’s partial regularity result for mean curvature
flow [22].

1 Introduction

A family (Mn, g(t)) of smooth complete Riemannian n-manifolds satisfying Hamilton’s Ricci
flow [10],

∂

∂t
g = −2Ricg(t), (1.1)

on a finite time interval [0, T ), T < ∞, is called a Type I Ricci flow if there exists a
constant C > 0 such that for all t ∈ [0, T )

sup
M

|Rmg(t)|g(t) ≤
C

T − t
. (1.2)

Such a solution is said to develop a Type I singularity at time T (and T is called a Type
I singular time) if it cannot be smoothly extended past time T . It is well known that this
is the case if and only if

lim sup
t↗T

sup
M

|Rmg(t)|g(t) =∞, (1.3)

see [10] for compact and [20] for complete flows. Here Rmg(t) denotes the Riemannian
curvature tensor of the metric g(t). The main examples of Ricci flow singularities are of Type
I, in particular the important neck-pinch singularity modelled on a shrinking n-dimensional
cylinder (cf. [1, 2]) and singularities modelled on flows starting at a positive Einstein metric
or more general at a gradient shrinking soliton with bounded curvature (see Section 2). Only
very few rigorous examples of finite time singularities which are not of Type I (i.e. Type II)
are known (cf. [6, 9]).

Since the manifolds (M, g(t)) have bounded curvatures in the Type I case (1.2), the parabolic
maximum principle applied to the evolution equation satisfied by |Rm|2 shows that (1.3) is
equivalent to

sup
M

|Rmg(t)|g(t) ≥
1

8(T − t)
for all t ∈ [0, T ). (1.4)
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This motivates the following definitions.

Definition 1.1. A quantity A(t) is said to blow up at the Type I rate as t→ T if there
exist constants C ≥ c > 0 such that c

T−t ≤ A(t) ≤ C
T−t for all t ∈ [T − c, T ).

Definition 1.2. A space-time sequence (pi, ti) with pi ∈ M and ti ↗ T in a Ricci flow is
called an essential blow-up sequence if there exists a constant c > 0 such that

|Rmg(ti)|g(ti)(pi) ≥
c

T − ti
.

A point p ∈M in a Type I Ricci flow is called a (general) Type I singular point if there
exists an essential blow-up sequence with pi → p on M. We denote the set of all Type I
singular points by ΣI .

Remark 1.3. If a solution to (1.1) develops a Type I singularity at time T , the existence
of an essential blow-up sequence follows from (1.4). If in addition M is compact, Type I
singular points always exist. In the noncompact case the Type I singular set ΣI may be
empty if the singularity forms at spatial infinity. An example where this happens could be
a cylinder Sn−1 × R with radius larger than 1 in the center and tapering down to 1 at the
ends. Flowing this under Ricci flow would lead to a first blow-up at spatial infinity.

A conjecture, normally attributed to Hamilton, is that a suitable blow-up sequence for a
Type I singularity converges to a nontrivial gradient shrinking soliton [11]. In the case where
the blow-up limit is compact, this conjecture was confirmed by Sesum [19]. In the general
case, blow-up to a gradient shrinking soliton was proved by Naber [15]. However, it remained
an open question whether the limit soliton Naber constructed is nontrivial, as mentioned
for example in [3, Section 3.2]. In particular, one might think that the limit could be flat
if all essential blow-up sequences converged “slowly” to p so that the curvature disappears
at infinity after parabolically rescaling. One of the goals of this article is to rule out this
possibility. More precisely, we prove the following theorem.

Theorem 1.4. Let (Mn, g(t)) be a Type I Ricci flow on [0, T ) and suppose p ∈ ΣI is a Type
I singular point as in Definition 1.2. Then for every sequence λj → ∞, the rescaled Ricci
flows (M, gj(t), p) defined on [−λjT, 0) by gj(t) := λjg(T + t

λj
) subconverge to a normalized

nontrivial gradient shrinking soliton in canonical form.

We now turn to the relationship between the set ΣI of Type I singular points and other
notions of singular sets, starting with the set of special Type I singular points Σs defined as
follows.

Definition 1.5. A point p ∈M in a Type I Ricci flow is called a special Type I singular
point if there exists an essential blow-up sequence (pi, ti) with pi = p for all i ∈ N. The
set of all such points is denoted by Σs. Moreover, we denote by ΣRm ⊆ Σs the set of points
p ∈M for which |Rmg(t)|g(t)(p) blows up at the Type I rate as t→ T .

For mean curvature flow, Le-Sesum [13] proved that the mean curvature (rather than the
second fundamental form) must be unbounded at a Type I singular time. It is not surprising
and known to some Ricci flow experts that a similar result is true for the Ricci flow: if T is
a Type I singular time, then the scalar curvature Rg(t) is unbounded as t → T . We make
the following definition.
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Definition 1.6. The set ΣR is defined to be the set of points p ∈ M for which Rg(t)(p)
blows up at the Type I rate as t→ T.

Instead of defining more restrictive singular sets, one can also think of a priori larger sets
of singular points, for example the set consisting of points p ∈ M where |Rmg(t)|g(t)(p) is
unbounded as t → T but possibly blows up at a rate smaller than the Type I rate, e.g.
like 1

(T−t)α for some α < 1. A priori it is not clear whether (in the presence of a Type I

singularity) such slowly forming singularities may exist in another part of the manifold, in
particular since they cannot be observed by a blow-up argument analogous to Theorem 1.4.
The following is the most general, natural definition of the singular set.

Definition 1.7. We call p ∈M a singular point if there does not exist any neighbourhood
Up 3 p on which |Rmg(t)|g(t) stays bounded as t→ T . The set of all singular points in this
sense is denoted by Σ.

From the above definitions it is clear that

ΣR ⊆ ΣRm ⊆ Σs ⊆ ΣI ⊆ Σ. (1.5)

For mean curvature flow with H > 0, Stone [21] showed that the (corresponding) notions of
singular sets Σs, ΣI and Σ agree. The same is true for the Ricci flow; in fact, we show the
slightly stronger result that all the singular sets defined above are identical.

Theorem 1.8. Let (Mn, g(t)) be a Type I Ricci flow on [0, T ) with singular time T . Then
Σ ⊆ ΣR, i.e. all the different notions of nested singular sets in (1.5) agree.

In particular, this shows that for a Type I Ricci flow there cannot exist singular points
where Rg(t) stays bounded or blows up at a rate smaller than the Type I rate as t→ T . As
a corollary, we conclude that the singular set Σ has asymptotically vanishing volume if its
volume is bounded initially.

Theorem 1.9. Let (Mn, g(t)) be a Type I Ricci flow on [0, T ) with singular time T and
singular set Σ as in Definition 1.7. If Volg(0)(Σ) <∞ then

Volg(t)(Σ)
t→T−−−→ 0.

Remark 1.10. A shrinking cylinder Sm × Rn−m, n > m ≥ 2, shows that the condition
Volg(0)(Σ) <∞ is necessary.

The paper is organized as follows. In Section 2, we prove Theorem 1.4. The methods we are
using strongly rely on Perelman’s results [17]. First, we recall Naber’s result [15] that for
any point p ∈ M the rescaled flows gj(t) as defined in Theorem 1.4 converge to a gradient
shrinking soliton (Theorem 2.6). This is based on a version of Perelman’s reduced length and
volume based at the singular time, developed independently by the first author [7] and Naber
[15]. For completeness, we sketch the main arguments of the proof. We then use Perelman’s
pseudolocality theorem [17] to show that the limit soliton must be nontrivial if p ∈ ΣI is
a Type I singular point. This completes the proof of Theorem 1.4. In Section 3, we prove
Theorem 1.8. The argument is based again on Perelman’s pseudolocality result as well as a
strong rigidity result for gradient shrinking solitons, which can be found in Pigola-Rimoldi-
Setti [18]. As a corollary, we obtain a proof of Theorem 1.9. Finally, in the last section
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we define a density function θp,T for Type I Ricci flows, related to the central density
for gradient shrinking solitons defined by Cao-Hamilton-Ilmanen [4], and prove a regularity
type theorem (Theorem 4.4) resembling White’s regularity result for mean curvature flow
[22] and Ni’s regularity theorem for Ricci flow [16]. The proof of this result uses a gap
theorem of Yokota [23].

Le and Sesum have also been studying properties of the scalar curvature at a Ricci flow
singularity. In the current version of their paper [14], they observe how the arguments from
our paper in fact exclude Type I singularity formation for compact manifolds under the
assumption of an integral (rather than pointwise) scalar curvature bound.

Acknowledgements: All authors were partially supported by The Leverhulme Trust.
RM was partially supported by FIRB Ideas “Analysis and Beyond”.

2 Blow-up to nontrivial gradient shrinking solitons

Before we start proving Theorem 1.4, let us briefly recall some basic definitions and facts
about gradient shrinking solitons as well as the essential definitions and results from the
first author [7] and Naber [15].

Definition 2.1. A triple (Mn, g, f), where (M, g) is a complete n-dimensional Riemannian
manifold and f : M→ R a smooth function, is called gradient shrinking soliton if

Ricg +∇g∇f =
1

2
g.

It is well known, that we can normalize f on a gradient shrinking soliton by setting

Rg + |∇f |2g − f = 0. (2.1)

It follows from (2.1) and the fact that R ≥ 0 (cf. e.g. [24]), that ∇f is a complete vector
field. Letting T > 0 and considering the diffeomorphisms φt of M generated by 1

T−t∇f with
φT−1 = id, we obtain from the definition of gradient shrinking soliton above a corresponding
Ricci flow g(t) = (T − t)φ∗t g on (−∞, T ) with (M, g(T − 1)) = (M, g). Canonically defining
time-dependent functions by f(t) := φ∗t f, the flow satisfies

Ricg(t) +∇g(t)∇f(t) =
1

2(T − t)
g(t) and

∂

∂t
f(t) = |∇f(t)|2g(t). (2.2)

We call a Ricci flow (M, g(t), f(t)) on (−∞, T ) with smooth functions f(t) : M → R satis-
fying (2.2) a gradient shrinking soliton in canonical form.

Let (Mn, g(t)) be a (connected) Type I Ricci flow on [0, T ) as defined in the Section 1. For
fixed (p, t0) ∈ M × [0, T ) and all (q, t̄) ∈ M × [0, t0], Perelman’s reduced distance (in
forward time notation) is defined by

lp,t0(q, t̄) := inf
γ

{
1

2
√
t0 − t̄

∫ t0

t̄

√
t0 − t

(
|γ̇(t)|2 +Rg(t)(γ(t))

)
dt

}
,
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where the infimum is taken over all curves γ : [t̄, t0] → M with γ(t0) = p, γ(t̄) = q. The
corresponding reduced volume is

Ṽp,t0(t̄) :=

∫
M

vp,t0(q, t̄)dvolg(t̄)(q),

where
vp,t0(q, t̄) :=

(
4π(t0 − t̄)

)−n2 e−lp,t0 (q,t̄).

We will use the following two results from [7] (restricted here to the Type I case):

Lemma 2.2 (Enders [7], Theorem 3.3.1). Let (Mn, g(t)) be a (connected) Type I Ricci flow
on [0, T ), p ∈M and tk ↗ T. Then there exists a locally Lipschitz function

lp,T : M× (0, T )→ R,

which is a subsequential limit

lp,tk
C0
loc(M×(0,T ))−−−−−−−−−−→ lp,T

and which for all (q, t̄) ∈M× (0, T ) satisfies

− ∂

∂t̄
lp,T (q, t̄)−∆g(t̄)lp,T (q, t̄) + |∇lp,T (q, t̄)|2g(t̄) − Rg(t̄)(q) +

n

2(T − t̄)
≥ 0

in the sense of distributions. Equivalently,

�∗g(t̄)vp,T (q, t̄) ≤ 0,

where

�∗g(t) := − ∂

∂t
−∆g(t) + Rg(t)

denotes the formal adjoint of the heat operator under the Ricci flow, and

vp,T (q, t̄) :=
(
4π(T − t̄)

)−n2 e−lp,T (q,t̄).

Definition 2.3. We define lp,T as in Lemma 2.2 to be a reduced distance based at the
singular time (p, T ). Moreover, the corresponding

Ṽp,T (t̄) :=

∫
M

vp,T (q, t̄)dvolg(t̄)(q)

is denoted a reduced volume based at the singular time (p, T ) with vp,T being a
reduced volume density based at the singular time (p, T ).

The next result states that similarly to Perelman’s reduced volume, any reduced volume
based at singular time is also a monotone quantity.

Lemma 2.4 (Enders [7], Theorem 3.4.3). Under the assumptions as in Definition 2.3 we
have

(i) d
dt̄ Ṽp,T (t̄) ≥ 0,

(ii) limt̄↗T Ṽp,T (t̄) ≤ 1,
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(iii) If Ṽp,T (t̄1) = Ṽp,T (t̄2) for 0 < t̄1 < t̄2 < T, then (M, g(t), lp,T ( · , t)) is a normalized
gradient shrinking soliton in canonical form.

Similar results to Lemma 2.2 and Lemma 2.4 have been independently obtained in [15]. We
restate the estimates derived there in the following adapted form.

Lemma 2.5 (Naber [15], Proposition 3.6). Let (Mn, g(t)) be a (connected) Type I Ricci
flow on [0, T ), and let (p, t0) ∈ M × [0, T ). Then there exist K > 0 (only dependent on n
and the Type I constant C) such that for all (q, t̄) ∈M× (0, T )

(i) 1
K

(
1 + dt̄(p,q)√

t0−t̄

)2

−K ≤ lp,t0(q, t̄) ≤ K
(

1 + dt̄(p,q)√
t0−t̄

)2

,

(ii) |∇lp,t0(q, t̄)|g(t̄)(q) ≤ K√
t0−t̄

(
1 + dt̄(p,q)√

t0−t̄

)
,

(iii) | ∂∂t̄ lp,t0(q, t̄)|g(t̄)(q) ≤ K
t0−t̄

(
1 + dt̄(p,q)√

t0−t̄

)2

.

We now show that parabolic rescaling limits in a Type I Ricci flow (around any point p ∈M

at the singular time T ) have a gradient shrinking soliton structure. For completeness, we
reprove this result which was first obtained in [15].

Theorem 2.6 (cf. Naber [15], Theorem 1.5). Let (Mn, g(t), p), t ∈ [0, T ), p ∈M be a pointed
Type I Ricci flow, and λj ↗ ∞. Then any pointed Cheeger-Gromov-Hamilton limit flow
(Mn
∞, g∞(t), p∞), t ∈ (−∞, 0), of the parabolically rescaled Ricci flows gj(t) := λjg(T + t

λj
)

is a normalized gradient shrinking soliton in canonical form.

Proof. Because of the Type I curvature bound, we have at any x ∈M that

|Rmgj(t)|gj(t)(x) =
1

λj
|Rmg(T+ t

λj
)|g(T+ t

λj
)(x)

≤ C

λj
(
T − (T + t

λj
)
) =

C

−t
.

(2.3)

This gives a uniform curvature bound on compact subsets of (−∞, 0). Together with Perel-
man’s no local collapsing theorem (which also holds for complete M because of the uniform
lower bound on the reduced volume as described below), we can use the Cheeger-Gromov-
Hamilton Compactness Theorem [12] to extract from the sequence (M, gj(t), p) a complete
pointed subsequential limit Ricci flow (M∞, g∞(t), p∞) on (−∞, 0), which is still Type I.

Now, let lp,T be any reduced distance based at the singular time (p, T ) for the Ricci flow
(M, g(t)) on [0, T ) as defined above. For each (q, t̄) ∈ M × (−∞, 0), consider for large
enough j

ljp,0(q, t̄) := lp,T (q, T + t̄
λj

), (2.4)

which is a reduced distance based at the singular time (p, 0) for the rescaled Ricci flow
(M, gj(t)) on [−λjT, 0) because of the scaling properties of the reduced distance. The
corresponding reduced volumes are then related by

Ṽ jp,0(t̄) = Ṽp,T (T + t̄
λj

),
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and we can conclude, using also Lemma 2.4, that

Ṽ jp,0
j→∞−−−→ lim

t↗T
Ṽp,T (t) ∈ (0, 1]

uniformly on compact subsets of (−∞, 0).

The uniform estimates in Lemma 2.5 hold for lp,T by construction, and hence by (2.4) for

each ljp,0. Note that by (2.3) they have the same Type I bound C. Hence we can conclude
that there exists a locally Lipschitz function l∞p∞,0 on the limit manifold M∞×(−∞, 0), such
that

ljp,0
C0
loc−−−→ l∞p∞,0.

Since its corresponding formal reduced volume V∞p∞,0 is constant, we can conclude as in the
proof of Lemma 2.4 (iii) that (M∞, g∞(t), l∞p∞,0( · , t)) is a normalized gradient shrinking
soliton in canonical form.

To obtain a complete proof of Theorem 1.4, it remains to show that for Type I singular
points p ∈ ΣI the rescaling limit flow (M∞, g∞(t)) in Theorem 2.6 is nontrivial and hence a
suitable singularity model.

Our proof is based on Perelman’s pseudolocality theorem, which states the following.

Proposition 2.7 (Perelman [17], Theorem 10.3). There exist ε, δ > 0 depending on n with
the following property. Suppose g(t) is a complete Ricci flow with bounded curvature on an
n-dimensional manifold Mn for t ∈ [0, (εr0)2). Moreover, suppose that r0 > 0, p ∈ M and
assume that at t = 0 we have |Rmg(0)| ≤ r−2

0 in Bg(0)(p, r0) and Volg(0)

(
Bg(0)(p, r0)

)
≥

(1− δ)ωnrn0 , where ωn is the volume of the unit ball in Rn. Then there holds the following
estimate

|Rmg(t)|(x) ≤ (εr0)−2, for 0 ≤ t < (εr0)2, x ∈ Bg(t)(p, εr0). (2.5)

Remark 2.8. Note that by choosing a smaller ε, estimate (2.5) holds for x ∈ Bg(0)(p, εr0).
This follows directly from the following lemma, variants of which can be found elsewhere,
for example [11].

Lemma 2.9. Suppose that g(t) is a Ricci flow on a manifold Mn for t ∈ [0, T ]. Suppose
further that for some p ∈ M and r > 0, we have Bg(t)(p, r) ⊂⊂ M, and |Ric| ≤ M on
Bg(t)(p, r) for each t ∈ [0, T ]. Then

Bg(0)(p, e
−Mtr) ⊂ Bg(t)(p, r),

for all t ∈ [0, T ].

Proof. Let σ ∈ (0, 1) be arbitrary. It suffices to show that

Bg(0)(p, e−Mtσr) ⊂ Bg(t)(p, r),

for each t ∈ [0, T ]. Clearly this is true for t = 0; suppose it fails for some larger t = t0 ∈ (0, T ].
Without loss of generality, t0 is the least such time.

Pick a minimizing geodesic γ, with respect to g(0), from p to a point y ∈M with dg(0)(p, y) =
e−Mt0σr and dg(t0)(p, y) = r.
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Then for all t ∈ [0, t0), γ lies within Bg(0)(p, e
−Mtσr) ⊂ Bg(t)(p, r), and hence (by hypothe-

sis) |Ric| ≤M on γ over this range of times.

But then Lengthg(t)(γ) ≤ eMtLengthg(0)(γ) for all t ∈ [0, t0), and hence

Lengthg(t0)(γ) ≤ eMt0e−Mt0σr = σr < r,

and this implies dg(t0)(p, y) < r, a contradiction.

We are now ready to prove that the blow-up limit is nontrivial.

Proof of Theorem 1.4. Assume that g∞(t) is flat for all t < 0. In particular, g∞(t) is inde-
pendent of time, and we denote it by ĝ.

Take r0 > 0 smaller than the injectivity radius of ĝ at p∞ to ensure that Bĝ(p∞, r0) is
a Euclidean ball. By the Cheeger-Gromov-Hamilton convergence, taking j large enough,
Bgj(−(εr0)2)(p, r0) is as close as we want to a Euclidean ball, where ε is chosen as in Propo-
sition 2.7. In particular, we may fix j sufficiently large such that Bgj(−(εr0)2)(p, r0) satisfies
the conditions of Proposition 2.7 and hence, using also Remark 2.8,

|Rmgj(t)|gj(t)(x) ≤ (εr0)−2 for − (εr0)2 ≤ t < 0, x ∈ Bgj(−(εr0)2)(p, εr0). (2.6)

On the other hand, since p ∈ ΣI , there exists an essential blow-up sequence (pi, ti) with
pi → p such that for a constant c > 0 as in Definition 1.2

|Rmgj(λj(ti−T ))|gj(λj(ti−T ))(pi) ≥
c

λj(T − ti)
.

For i large enough, this contradicts (2.6). Thus g∞(t) cannot be flat.

Nontrivial gradient shrinking solitons also arise as blow-down limits of certain ancient Ricci
flow solutions (which are singularity models) as shown by Perelman [17] in 3 dimensions,
and recently by Cao and Zhang [5] for higher dimensions in the Type I case.

3 Singular sets

A crucial ingredient for the theorems proved in this and the next section is the following
rigidity result for gradient shrinking solitons as for example shown in [18].

Lemma 3.1 (Pigola-Rimoldi-Setti [18], Theorem 3). Let (Mn, g, f) be a complete gradient
shrinking soliton. Then the scalar curvature Rg is nonnegative, and if there exists a point
p ∈ M where Rg(p) = 0, then (M, g, f) is the Gaussian soliton, i.e. isometric to flat
Euclidean space (Rn, gRn).

We use this lemma to prove Theorem 1.8, i.e. that Σ ⊆ ΣR. As a first step, we show that
the Type I singular set ΣI is characterized by the blow-up of the scalar curvature at the
Type I rate, i.e. ΣI = ΣR.
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Theorem 3.2. Let (Mn, g(t)) be a Type I Ricci flow on [0, T ) with singular time T , Type I
singular set ΣI as in Definition 1.2 and ΣR as in Definition 1.6. Then ΣI = ΣR.

Proof. By definition, we know that ΣR ⊆ ΣI . For the converse inclusion, assume that
p ∈ M \ ΣR. Hence there are cj ↘ 0 and tj ∈ [T − cj , T ), such that Rg(tj)(p) <

cj
T−tj .

Let λj = (T − tj)−1 → ∞ and rescale as in Theorem 2.6, i.e. let gj(t) := λjg(T + t
λj

) on

M × [−λjT, 0). By Theorem 2.6, (M, gj(t), p) converge to a gradient shrinking soliton in
canonical form (M∞, g∞(t), p∞) on (−∞, 0) with

Rg∞(−1)(p∞) = lim
j→∞

λ−1
j Rg(tj)(p) ≤ lim

j→∞
cj = 0.

By Lemma 3.1, (M∞, g∞(−1)) = (M∞, g∞(t)) must be flat. But by Theorem 1.4, the limit
soliton is nonflat for points in the Type I singular set, so p ∈M \ ΣI .

To show that Σ = ΣI , we prove the following regularity type result.

Theorem 3.3. If (Mn, g(t)) is a Type I Ricci flow on [0, T ) with singular time T and
p ∈ M \ ΣI , then there exists a neighbourhood Up 3 p such that the curvature is bounded
uniformly on Up × [0, T ). In particular, p ∈M \ Σ.

Proof. Since p ∈ M \ ΣI , for any given λj → ∞ the rescaled metrics gj(t) = λjg(T + t
λj

)

converge to flat Euclidean space. As in the proof of Theorem 1.4, for large enough j ≥ j0 the
conditions of the pseudolocality theorem, Proposition 2.7, and Lemma 2.9 with r0 = 1 are
satisfied. Let K := λj0 and take ε > 0 to be as in the pseudolocality theorem and Remark
2.8 following it. Then we conclude for j = j0 as before

|Rmgj0 (t)|gj0 (t)(x) ≤ ε−2 for − ε2 ≤ t < 0, x ∈ Bgj0 (−ε2)(p, ε),

which is equivalent to

|Rmg(t)|g(t) ≤
K

ε2
for all t ∈ [T − ε2

K , T )

on the neighbourhood Up := B
g(T− ε2K )

(p, ε√
K

) of p. The bound for times t < T − ε2

K follows

trivially from the Type I condition (1.2).

Combining Theorem 3.2 and Theorem 3.3, we have proved Theorem 1.8. As a corollary,
we obtain Theorem 1.9, i.e. that the singular set Σ has asymptotically vanishing volume if
Volg(0)(Σ) <∞.

Proof of Theorem 1.9. By the bounded curvature assumption (1.2) together with the parabolic
maximum principle applied to the evolution ofRg(t), there exists C̃ > 0 such that infMRg(t) ≥
−C̃, ∀t ∈ [0, T ). Let ΣR,k be defined by

ΣR,k := {p ∈M |Rg(t)(p) ≥ 1/k
T−t , ∀t ∈ (T − 1

k , T )} ⊆ ΣR = Σ

for k ∈ N and ΣR,0 := ∅. We claim that on ΣR,k, we have for all t ∈ [0, T )∫ t

0

Rg(s)ds ≥ −C̃T + log
(

1/k
T−t

)1/k

.
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For t ≤ T − 1
k , this follows from

∫ t
0
Rds ≥ −C̃t ≥ −C̃T and the fact that the log-term is

nonpositive in this case. For t ∈ (T − 1
k , T ), we obtain by definition of ΣR,k∫ t

0

Rg(s)ds =

∫ T− 1
k

0

Rg(s)ds+

∫ t

T− 1
k

Rg(s)ds

≥ −C̃(T − 1
k ) +

∫ t

T− 1
k

1/k
T−sds

≥ −C̃T + log
(

1/k
T−t

)1/k

.

Using k1/k ≤ 2 for all k ∈ N, we can now bound volumes of subsets of ΣR,k at time t in
terms of their volumes at time 0 by computing

Volg(t)(ΣR,k \ ΣR,k−1) =

∫
ΣR,k\ΣR,k−1

e−(
∫ t
0
Rg(s)ds)dvolg(0)

≤ 2eC̃T (T − t)1/k Volg(0)(ΣR,k \ ΣR,k−1).

We use this last estimate to conclude

lim sup
t→T

Volg(t)(Σ) = lim sup
t→T

∑
k∈N

Volg(t)(ΣR,k \ ΣR,k−1)

≤ 2eC̃T lim
t→T

∑
k∈N

(T − t)1/k Volg(0)(ΣR,k \ ΣR,k−1)

= 0,

where the last line follows easily from the fact that
∑
k∈N Volg(0)(ΣR,k\ΣR,k−1) = Volg(0)(ΣR) <

∞.

4 Density and regularity theorem

In this section, we use the reduced volume based at the singular time as reviewed in Section
2 to define a density function on the closure of space-time of Type I Ricci flows and prove
a regularity theorem. We first overcome the non-uniqueness issue of the reduced distance
based at the singular time. The functions lp,T used in Section 2 were subsequential limits
and depended on the choice of {tk} and a subsequence {tkl}. We now denote such a choice
of reduced distance based at the singular time by lp,T,{tkl} to make the following definition.

Definition 4.1. Under the assumptions of Lemma 2.2, we define the reduced distance
based at the singular time by

lp,T := inf
{tkl}

lp,T,{tkl},

where the infimum is taken over all possible subsequences of all possible sequences tk ↗ T
used to construct a reduced distance. As in Definition 2.3, we correspondingly denote the
reduced volume density and the reduced volume based at the singular time by
vp,T and Ṽp,T , respectively.
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Note that Lemma 2.5 implies that lp,T is well-defined and locally Lipschitz because lp,T,{tkl}

are uniformly locally Lipschitz. The monotonicity in Lemma 2.4 for the redefined Ṽp,T as
above holds once we show the following lemma.

Lemma 4.2. Under the assumptions as in Lemma 2.2, we have for vp,T in Definition 4.1
that

�∗g(t̄)vp,T (q, t̄) ≤ 0

holds in the weak sense or sense of distributions.

Proof. We argue by contradiction: Assume there exists a (small) parabolic cylinder P =
U × [t2, t1) ⊂ M × (0, T ), U open, such that for all 0 ≤ φ ∈ C2

cpt(M × (0, T )) with support
in P x

P

vp,T (q, t)�g(t)φ(q, t) dvolg(t)(q)dt > 0.

Inverting time (τ := T − t) implies that −vp,T is strictly subparabolic in the weak sense of
Friedman [8], and we will apply his (strong) maximum principle several times to derive a
contradiction.

By Definition 4.1, vp,T := sup{tkl}
vp,T,{tkl}. Let {tkl} be any such subsequence, then

vp,T,{tkl} ≤ vp,T , and we know from Lemma 2.2 that

�∗vp,T,{tkl} ≤ 0

in the weak sense. Now let Γ := P̄\P and w{tkl} be a weak solution to{
�∗w{tkl} = 0 in P

w{tkl}|Γ = vp,T,{tkl}|Γ.

Hence,
�∗(vp,T,{tkl} − w{tkl}) ≤ 0,

and the maximum principle implies

vp,T,{tkl} ≤ w{tkl} in P̄. (4.1)

Similarly, let w be a weak solution to{
�∗w = 0 in P
w|Γ = vp,T |Γ.

Since
�∗(w{tkl} − w) = 0

and w{tkl}|Γ = vp,T,{tkl}|Γ ≤ vp,T |Γ = w|Γ, the maximum principle implies that

w{tkl} ≤ w in P̄. (4.2)

As {tkl} was arbitrary, we conclude from (4.1) and (4.2) that

vp,T ≤ w in P̄.

Using vp,T |Γ = w|Γ and the maximum principle again, this contradicts that by assumption

�∗(vp,T − w) > 0

in the weak sense in P.
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We now consider points in the closure of space-time, i.e. in M× [0, T ], to include the singular
time.

Definition 4.3. Let (M, g(t)) be a Type I Ricci flow on [0, T ). For any (p, t0) ∈M× [0, T ]
we define the density at (p, t0) in the Ricci flow (M, g(t)) by

θp,t0 := lim
t̄↗t0

Ṽp,t0(t̄) ∈ (0, 1].

Note that for the special case of gradient shrinking solitons, Cao-Hamilton-Ilmanen [4] sug-
gest a “central density of a shrinker” defined similarly.

If T is the Type I singular time and t0 < T it follows from the properties of Perelman’s
reduced volume that θp,t0 = 1 for any p ∈ M (in fact, without the Type I assumption).
At the singular time t0 = T, the density carries information regarding the structure of the
singularity, namely the corresponding gradient shrinking solitons one may obtain by taking
a blow-up limit. We prove the following regularity type result similar to White’s local
regularity result for mean curvature flow [22], where instead of using the Gaussian density
for the mean curvature flow we use the density for Type I Ricci flows as defined above. A
related result is proved by Ni [16] using a localized quantity.

Theorem 4.4. Let (Mn, g(t)) be a Type I Ricci flow on [0, T ) with singular time T and
singular set Σ as in Definition 1.7. Then θp,T = 1 if and only if p ∈ M \ Σ. In fact, there
exists η > 0 (only depending on n) such that if θp,T > 1− η for a Ricci flow as above, then
p ∈M \Σ. Equivalently, if θp,T > 1− η, then there exists a neighbourhood Up 3 p such that
the curvature is bounded uniformly on Up × [0, T ).

Proof. It follows from the discussion in Section 3 that any rescaling limit (M∞, g∞(t)) as in
Theorem 2.6 around p ∈M \Σ is flat, i.e. (M∞, g∞(t)) is isometric to the Gaussian soliton
(Rn, gRn). Hence one easily computes θp,T = 1.

Conversely, let θp,T be the density of p ∈ M and let (M∞, g∞(t), l∞(t)) be the rescaling
limit flow around (p, T ). It is a normalized gradient shrinking soliton in canonical form with
constant formal reduced volume

θp,T =

∫
M∞

(4π(T − t))−n2 e−l
∞(t)dvolg∞(t)

for any t. Note that in the proof of Theorem 2.6 we can use lp,T instead of lp,T,{tkl} as it
only requires the estimates from Lemma 2.5 as well as the formal equalities on a constant
reduced volume. Now we can employ [23, Corollary 1.1 (3)] to conclude that there exists
η > 0 (only depending on n) such that if θp,T > 1 − η, then the limit flow is the Gaussian
soliton. In particular, θp,T > 1− η implies p ∈M \ Σ by Theorems 1.4 and 1.8.
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