122 research outputs found

    Doped Sr2FeIrO6 – phase separation and a Jeff ≠ 0 state for Ir5+

    Get PDF
    High-resolution synchrotron X-ray and neutron powder diffraction data demonstrate that, in contrast to recent reports, Sr2FeIrO6 adopts an I1 symmetry double perovskite structure with an a–b–c– tilting distortion. This distorted structure does not tolerate cation substitution, with low levels of A-site (Ca, Ba, La) or Fe-site (Ga) substitution leading to separation into two phases: a stoichiometric I1 phase and a cation-substituted, P21/n symmetry, a–a–c+ distorted double perovskite phase. Magnetization, neutron diffraction and 57Fe Mössbauer data show that in common with Sr2FeIrO6, the cation substituted Sr2-xAxFe1-yGayIrO6 phases undergo transitions to type-II antiferromagnetically ordered states at TN ~ 120 K. However, in contrast to stoichiometric Sr2FeIrO6, cation substituted samples exhibit a further magnetic transition at TA ~ 220 K, which corresponds to the ordering of reff ≠ 0 Ir5+ centers in the cation-substituted, P21/n symmetry, double perovskite phases

    Octanuclear heterobimetallic {Ni4Ln4} assemblies possessing Ln4 square grid [2×2] motifs : synthesis, structure and magnetism

    Get PDF
    Octanuclear heterobimetallic complexes, [Ln4Ni4(H3L)4(”3-OH)4(”2-OH)4]4Cl·xH2O·yCHCl3 (Dy3+ , x = 30.6, y = 2 (1); Tb3+ , x = 28, y = 0 (2) ; Gd3+ , x = 25.3, y = 0 (3); Ho3+ , x = 30.6, y = 3 (4)) (H5L = N1, N3-bis(6-formyl-2-(hydroxymethyl) -4-methylphenol) diethylenetriamine) are reported. These are assembled by the cumulative coordination action of four doubly deprotonated compartmental ligands, [H3L] 2- , along with eight exogenous –OH ligands. Within the core of these complexes, four Ln3+ are distributed to the four corners of a perfect square grid while four Ni2+ are projected away from the plane of the Ln4 unit. Each of the four Ni2+ possesses distorted octahedral geometry while all the Ln3+ are crystallographically equivalent and are present in an elongated square antiprism geometry. The magnetic properties of compound 3 are dominated by an easy-plane single-ion anisotropy of the Ni2+ ions [DNi = 6.7(7) K] and dipolar interactions between Gd3+ centers. Detailed ac magnetometry reveals the presence of distinct temperature-dependent out-of-phase signals for compounds 1 and 2, indicative of slow magnetic relaxation. Magnetochemical analysis of complex 1 implies the 3d and the 4f metal ions are engaged in ferromagnetic interactions with SMM behavior, while dc magnetometry of compound 2 is suggestive of an antiferromagnetic Ni-Tb spin-exchange with slow magnetic relaxation due to a field-induced level crossing. Compound 4 exhibits an easy-plane single-ion anisotropy for the Ho3+ ions and weak interactions between spin centers

    An exploratory investigation of endotoxin levels in novice long distance triathletes, and the effects of a multi-strain probiotic/prebiotic, antioxidant intervention.

    Get PDF
    Abstract: Gastrointestinal (GI) ischemia during exercise is associated with luminal permeability and increased systemic lipopolysaccharides (LPS). This study aimed to assess the impact of a multistrain pro/prebiotic/ antioxidant intervention on endotoxin unit levels and GI permeability in recreational athletes. Thirty healthy participants (25 males, 5 females) were randomly assigned either a multistrain pro/prebiotic/ antioxidant (LAB4ANTI; 30 billion CFU.d-1 containing 10 billion CFU.d-1 Lactobacillus acidophilus CUL-60 [NCIMB 30157], 10 billion CFU.d-1 Lactobacillus acidophillus CUL-21 [NCIMB 30156], 9.5 billion CFU.d-1 Bifidobacterium bifidum CUL-20 [NCIMB 30172] and 0.5 billion CFU.d-1 Bifidobacterium animalis subspecies lactis CUL-34 [NCIMB 30153]/ 55.8 mg.d-1 fructooligosaccharides/ 400 mg.d-1 α-lipoic acid, 600 mg.d-1 N-acetyl-carnitine); matched pro/prebiotic (LAB4) or placebo (PL) for 12 weeks preceding a long-distance triathlon. Plasma endotoxin units (via Limulus amebocyte lysate chromogenic quantification) and GI permeability (via 5 hour urinary lactulose (L): mannitol (M) recovery) were assessed at baseline, pre-race and 6 days post-race. Endotoxin unit levels were not significantly different between groups at baseline (LAB4ANTI: 8.20±1.60 pg.ml-1; LAB4: 8.92±1.20 pg.ml-1; PL: 9.72± 2.42 pg.ml-1). The use of a 12 week LAB4ANTI intervention significantly reduced endotoxin units both pre-race (4.37± 0.51 pg.ml-1) and 6 days post-race (5.18±0.57 pg.ml-1; p=0.03, ηp2 = 0.35), but only 6 days post-race with LAB4 (5.01± 0.28 pg.ml-1; p=0.01, ηp2 = 0.43). In contrast, endotoxin units remained unchanged with PL. L:M significantly increased from 0.01±0.01 at baseline to 0.06± 0.01 with PL only (p=0.004, ηp2 = 0.51). Mean race times (hr:min:sec) were not statistically different between groups despite faster times with both pro/prebiotoic groups (LAB4ANTI:13:17:07±34:48; LAB4: 12:47:13±25:06; PL: 14:12:51±29:54; p>0.05). Combined multistrain pro/prebiotic use may reduce endotoxin unit levels, with LAB4ANTI potentially conferring an additive effect via combined GI modulation and antioxidant protection

    Controlling magnetic order and quantum disorder in molecule-based magnets

    Get PDF
    We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H2O)(gly)2](ClO4)2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO4), which is formed from dimers of antiferromagnetically interacting Cu2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons

    Using problem formulation for fit‐for‐purpose pre‐market environmental risk assessments of regulated stressors

    Get PDF
    Pre‐market/prospective environmental risk assessments (ERAs) contribute to risk analyses performed to facilitate decisions about the market introduction of regulated stressors. Robust ERAs begin with an explicit problem formulation, which involves among other steps: (1) formally devising plausible pathways to harm that describe how the deployment of a regulated stressor could be harmful; (2) formulating risk hypotheses about the likelihood and severity of such events; (3) identifying the information that will be useful to test the risk hypotheses; and (4) developing a plan to acquire new data for hypothesis testing should tests with existing information be insufficient for decision‐making. Here, we apply problem formulation to the assessment of possible adverse effects of RNA interference‐based insecticidal genetically modified (GM) plants, GM growth hormone coho salmon, gene drive‐modified mosquitoes and classical biological weed control agents on non‐target organisms in a prospective manner, and of neonicotinoid insecticides on bees in a retrospective manner. In addition, specific considerations for the problem formulation for the ERA of nanomaterials and for landscape‐scale population‐level ERAs are given. We argue that applying problem formulation to ERA maximises the usefulness of ERA studies for decision‐making, through an iterative process, because: (1) harm is defined explicitly from the start; (2) the construction of risk hypotheses is guided by policy rather than an exhaustive attempt to address any possible differences; (3) existing information is used effectively; (4) new data are collected with a clear purpose; (5) risk is characterised against well‐defined criteria of hypothesis corroboration or falsification; and (6) risk assessment conclusions can be communicated clearly. However, problem formulation is still often hindered by the absence of clear policy goals and decision‐making criteria (e.g. definition of protection goals and what constitutes harm) that are needed to guide the interpretation of scientific information. We therefore advocate further dialogue between risk assessors and risk managers to clarify how ERAs can address policy goals and decision‐making criteria. Ideally, this dialogue should take place for all classes of regulated stressors, as this can promote alignment and consistency on the desired level of protection and maximum tolerable impacts across regulated stressors

    Magnetic properties of Sr3NiIrO6 and Sr3CoIrO6: Magnetic hysteresis with coercive fields of up to 55 T

    Get PDF
    We report extraordinarily large magnetic hysteresis loops in the iridates Sr3NiIrO5 and Sr3CoIrO6. We find coercive magnetic fields of up to 55 T with switched magnetic moments ≈1??B per formula unit in Sr3NiIrO6 and coercive fields of up to 52 T with switched moments ≈3??B per formula unit in Sr3CoIrO6. We propose that the magnetic hysteresis involves the field-induced evolution of quasi-one-dimensional chains in a frustrated triangular configuration. The striking magnetic behavior is likely to be linked to the unusual spin-orbit-entangled local state of the Ir4+ ion and its potential for anisotropic exchange interactions.clos

    Spin–lattice and electron–phonon coupling in 3d/5d hybrid Sr3NiIrO6

    Get PDF
    Research at the University of Tennessee, Rutgers University, and University of Minnesota is supported by the National Science Foundation DMREF program (DMR-1629079, DMR-1629059, and DMR-1629260, respectively). The crystal growth was partially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2016K1A4A4A01922028). We also appreciate funding from the U.S. Department of Energy, Basic Energy Sciences, contract DE-FG02-01ER45885 (Tennessee), “Science at 100 Tesla” (LANL), and “Topological phases of quantum matter and decoherence” (LANL). The NHMFL facility is supported by the U.S. National Science Foundation through Cooperative Grant DMR-1644779, the State of Florida, and the U.S. Department of Energy.While 3d-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5d systems are recognized for strong spin–orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr3NiIrO6, for example, displays complex magnetism and ultra-high coercive fields—up to an incredible 55 T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first-principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin–lattice and electron–phonon mechanisms. Magneto-infrared spectroscopy reveals spin–lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir4+ excitations reveals vibronic coupling and extremely large crystal field parameters that lead to a t2g-derived low-spin state for Ir. These findings highlight the spin–charge–lattice entanglement in Sr3NiIrO6 and suggest that similar interactions may take place in other 3d/5d hybrids.Publisher PDFPeer reviewe
    • 

    corecore