681 research outputs found

    Computational Study of the Structure and Thermodynamic Properties of Ammonium Chloride Clusters Using a Parallel J-Walking Approach

    Get PDF
    The thermodynamic and structural properties of (NH4_4Cl)n_n clusters, n=3-10 are studied. Using the method of simulated annealing, the geometries of several isomers for each cluster size are examined. Jump-walking Monte Carlo simulations are then used to compute the constant-volume heat capacity for each cluster size over a wide temperature range. To carry out these simulations a new parallel algorithm is developed using the Parallel Virtual Machine (PVM) software package. Features of the cluster potential energy surfaces, such as energy differences among isomers and rotational barriers of the ammonium ions, are found to play important roles in determining the shape of the heat capacity curves.Comment: Journal of Chemical Physics, accepted for publicatio

    Fock space relativistic coupled-Cluster calculations of Two-Valence Atoms

    Full text link
    We have developed an all particle Fock-space relativistic coupled-cluster method for two-valence atomic systems. We then describe a scheme to employ the coupled-cluster wave function to calculate atomic properties. Based on these developments we calculate the excitation energies, magnetic hyperfine constants and electric dipole matrix elements of Sr, Ba and Yb. Further more, we calculate the electric quadrupole HFS constants and the electric dipole matrix elements of Sr+^+, Ba+^+ and Yb+^+. For these we use the one-valence coupled-cluster wave functions obtained as an intermediate in the two-valence calculations. We also calculate the magnetic dipole hyperfine constants of Yb+^+.Comment: 23 pages, 12 figures, 10 tables typos are corrected and some minor modifications in some of the section

    A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Get PDF
    High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs) in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario

    Mutually Penetrating Motion of Self-Organized 2D Patterns of Soliton-Like Structures

    Full text link
    Results of numerical simulations of a recently derived most general dissipative-dispersive PDE describing evolution of a film flowing down an inclined plane are presented. They indicate that a novel complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of the theory are possible: the required sufficiently viscous liquids are readily available.Comment: minor corrections, 4 pages, LaTeX, 6 figures, mpeg simulations available upon or reques

    Anxiety Detection Leveraging Mobile Passive Sensing

    Full text link
    Anxiety disorders are the most common class of psychiatric problems affecting both children and adults. However, tools to effectively monitor and manage anxiety are lacking, and comparatively limited research has been applied to addressing the unique challenges around anxiety. Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods, allowing for real-time mental health surveillance and disease management. This paper presents eWellness, an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner. We report on an initial pilot study tracking ten people over the course of a month that showed a nearly 76% success rate at predicting daily anxiety and depression levels based solely on the passively monitored features

    Reducing variability in the cost of energy of ocean energy arrays

    Get PDF
    Variability in the predicted cost of energy of an ocean energy converter array is more substantial than for other forms of energy generation, due to the combined stochastic action of weather conditions and failures. If the variability is great enough, then this may influence future financial decisions. This paper provides the unique contribution of quantifying variability in the predicted cost of energy and introduces a framework for investigating reduction of variability through investment in components. Following review of existing methodologies for parametric analysis of ocean energy array design, the development of the DTOcean software tool is presented. DTOcean can quantify variability by simulating the design, deployment and operation of arrays with higher complexity than previous models, designing sub-systems at component level. A case study of a theoretical floating wave energy converter array is used to demonstrate that the variability in levelised cost of energy (LCOE) can be greatest for the smallest arrays and that investment in improved component reliability can reduce both the variability and most likely value of LCOE. A hypothetical study of improved electrical cables and connectors shows reductions in LCOE up to 2.51% and reductions in the variability of LCOE of over 50%; these minima occur for different combinations of components.The research leading to this publication is part of the DTOceanPlus project which has received funding from the EuropeanUnion's Horizon 2020 research and innovation programme under grant agreement No 785921. Funding was also received from the European Community's Seventh Framework Programme for the DTOcean Project (grant agreement No. 608597). The contribution of Sandia National Laboratories was funded by the U.S. Department of Energy's Water Power Technologies Office. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. The image of the RM3 device, in Fig. 7, was reproduced with the permission of Sandia National Laboratorie
    corecore