
University of Rhode Island
DigitalCommons@URI

Chemistry Faculty Publications Chemistry

1996

Computational Study of the Structures and
Thermodynamic Properties of Ammonium
Chloride Clusters Using a Parallel Jump-Walking
Approach
Alexander Matro
University of Rhode Island

David L. Freeman
University of Rhode Island, dfreeman@uri.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs

Terms of Use
All rights reserved under copyright.

This Article is brought to you for free and open access by the Chemistry at DigitalCommons@URI. It has been accepted for inclusion in Chemistry
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Citation/Publisher Attribution
Matro, A., Freeman, D. L., & Topper, R. Q. (1996). Computational Study of the Structures and Thermodynamic Properties of
Amonium Chloride Clusters Using a Parallel Jump-Walking Approach. Journal of Chemical Physics, 104(21), 8690-8702. doi: 10.1063/
1.471558
Available at: http://dx.doi.org/10.1063/1.471558

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@URI

https://core.ac.uk/display/56696015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/chm?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.471558
mailto:digitalcommons@etal.uri.edu


Authors
Alexander Matro, David L. Freeman, and Robert Q. Topper

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/chm_facpubs/26

https://digitalcommons.uri.edu/chm_facpubs/26?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages


Computational study of the structures and thermodynamic properties
of ammonium chloride clusters using a parallel jump-walking approach

Alexander Matro and David L. Freeman
Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island
02881-0809
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Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island
02881-0809 and Department of Chemistry, The Cooper Union for the Advancement of Science and Art, Albert
Nerken School of Engineering, 51 Astor Place, New York, NY 10003a)

~Received 17 January 1996; accepted 27 February 1996!

The thermodynamic and structural properties of (NH4Cl!n clusters,n 5 3–10 are studied. Using the
method of simulated annealing, the geometries of several isomers for each cluster size are examined.
Jump-walking Monte Carlo simulations are then used to compute the constant-volume heat capacity
for each cluster size over a wide temperature range. To carry out these simulations a new parallel
algorithm is developed using the parallel virtual machine~PVM! software package. Features of the
cluster potential energy surfaces, such as energy differences among isomers and rotational barriers
of the ammonium ions, are found to play important roles in determining the shape of the heat
capacity curves. ©1996 American Institute of Physics.@S0021-9606~96!02021-1#

I. INTRODUCTION

As atomic or molecular aggregates ranging in size from
3 to as many as several thousand monomer units, clusters
represent an intermediate state of matter between the finite
and the bulk. This intermediate character of clusters has led
to considerable interest in their structural and thermody-
namic properties. From the perspective of structure, it is fre-
quently possible to determine the potential energy minima,
transition states, and the general topography of the potential
energy surface. The thermodynamic properties of clusters of-
ten mimic bulk materials and have been shown to exhibit
distinctive ‘‘solid-like’’ and ‘‘liquid-like’’ features.1–5

The examination of the potential energy surfaces of clus-
ters has been a subject of numerous theoretical investiga-
tions. A thorough study by Tsai and Jordan has uncovered
many of the isomers and transition states of~Ar!n ,
n57–13 clusters described by a Lennard-Jones pair
potential.6 Studies of NaCl clusters and cluster ions by Phil-
lips et al.7 have shown that clusters bound by ionic forces are
capable of forming a rich variety of structural isomers. Com-
plimentary to the study of potential minima is the study of
structures and energies of transition states connecting the
minima. In addition to the work of Tsai and Jordan,6 poten-
tial energy surfaces of clusters have been explored for tran-
sition states by Daviset al.8 and Wales.9 The height of the
transition state barriers between isomers can play a pivotal
role in influencing the isomerization time scale in clusters.

Two approaches have been used to study the thermody-
namic properties of clusters. The first approach10,11uses mo-
lecular dynamics simulations to identify temperature regions
with liquid-like and solid-like behavior. In the solid-like re-
gion clusters undergo small-amplitude vibrations about their
potential energy minima, while in the liquid-like region

large-amplitude motions are observed, taking the clusters
among different potential wells. Lyndon-Bell and Wales12

have used molecular dynamics simulations of Lennard-Jones
clusters to determine Landau free energy barriers between
solid-like and liquid-like states.

A second approach, used in this work, is to use Monte
Carlo simulations to calculate thermodynamic properties of
the clusters such as CV , the constant-volume heat capacity.
Heat capacities for Lennard-Jones clusters1,3 have been cal-
culated in this manner, and anomalies in CV such as peaks
and shoulders have been found to correspond to the onset of
isomerization. These isomerization transitions have been in-
terpreted as signatures of cluster analogs of phase changes
for some cluster sizes.3 In addition, Lopez and Freeman13

have calculated heat capacities for Ni–Pd clusters, observing
a ‘‘melting’’ transition and a low-temperature anomaly cor-
responding to an order–disorder transition analogous to
those seen in bulk bimetallic alloys.14

Metropolis Monte Carlo simulations15 in the temperature
region corresponding to the onset of isomerization suffer
from the inability to sample all available configuration space
ergodically. The deficiency of Metropolis sampling, which
cannot be effectively overcome by increasing the step size, is
its inability to move among the statistically important re-
gions of configuration space that are separated by significant
transition state barriers. One way to overcome the problems
of Metropolis sampling is to use the jump-walking~or
J-walking! move strategy.1,2 J-walking combines the small
step size of Metropolis Monte Carlo with occasional jumps
to configurations belonging to a higher temperature ergodic
distribution. The higher temperature distribution contains in-
formation about the potential energy surface of the system,
and the jumps to configurations belonging to separated but
statistically important regions of configuration space are thus
attempted with sufficient frequency.

Additional complexities in cluster behavior can occur ina!Present address.
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molecular aggregates. For example, in the case of ammo-
nium chloride studied here, the effects from the rotations of
the ammonium ions significantly contribute to the thermody-
namic properties. The rotational potential energy barriers are,
in many instances, smaller than barriers between distinct
minima, causing the rotational effects to be reflected in the
heat capacity at lower temperatures than the isomerization
effects.

In the current work we report two principal outcomes.
First, we develop a parallel J-walking algorithm that enables
us to carry out a Monte Carlo simulation efficiently in a
multi-processor computing environment. Second, the parallel
J-walking algorithm is applied to the study of the thermody-
namic properties of~NH4Cl!n , n 5 3–10 clusters. The con-
tents of the remainder of this paper are as follows. In Section
II we describe the computational methods, including the
model potential and a discussion of the simulated annealing
methods used to locate the ammonium chloride cluster iso-
mers. This is followed by a discussion of the J-walking
Monte Carlo simulation technique used in computing the
constant-volume heat capacity, and the implementation of
parallel virtual machine~PVM! software16 into our Monte
Carlo algorithm. Section II concludes with a discussion of
the methods used in locating transition states. In Section III
we present our results. Isomers of the ammonium chloride
clusters found by simulated annealing are shown, along with
a few structures of transition states. Then, a constant-volume
heat capacity curve for each cluster size is presented, along
with a discussion of the features of each curve. Finally, Sec-
tion IV contains our concluding remarks and directions for
future work.

II. METHODS

A. Model potential

In the Monte Carlo simulations carried out in this work,
a pair potential dominated by Coulombic interactions is used.
The form of the potential is

V~r !5(
i

(
j. i

SAi j exp~2a i j r i j !1
qiqj
r i j

1
Di j

r i j
122

Ci j

r i j
6 D , ~1!

wherer represents the entire set of coordinates for the sys-
tem, r i j is the distance between particlesi and j ,
qCl521.0, qN520.4, qH50.35, and the remaining param-
eters are given in Table I. The potential is derived from
potentials of Kleinet al.17 and Pettitt and Rossky.18,19 The
parameters not available from other sources are obtained
with the standard combination rules. Because the present
simulations are classical and the internal vibrations of the
ammonium ions are expected to be quantum mechanical with
high frequencies, the ammonium ions in the potential of Eq.
~1! are assumed to be rigid tetrahedra. With the potential in
Eq. ~1!, in the CsCl phase at 0 K the lattice constant for bulk
ammonium chloride is found to be 3.79 Å with a cohesive
energy of2720 kJ mol21. These numbers can be compared
with the experimental lattice constant~3.868 Å!20 and the
experimental cohesive energy at 298 K~2697 kJ mol21).21

Because clusters have finite vapor pressures in constant
temperature simulations, an external constraining potential22

has been included about the center of mass of each cluster.
For this constraining potential we have chosen the same form
used elsewhere23

Vc~r !5k(
i51

n S ur i2Rcmu
Rc

D 20 ~2!

wherer i is the coordinate of particlei , Rcm is the coordinate
of the center of mass of the cluster,k has units of energy and
Rc is a parameter that defines the radius of the constraining
potential. In the current calculationsRc is taken to be 15
Bohr for the trimer, 20 Bohr for the tetramer, 25 Bohr for
n55–7, and 30 Bohr forn58–10. In this workk is taken
to be unity.

In the simulated annealing calculations that are used in
finding structures of the isomers, it is computationally more
convenient to include all degrees of freedom of the system.
The internal vibrations of the ammonium ions are described
with a harmonic force-field potential of the form

VI5
1

2
kNH(

i52

5

~r 1 j2r 0!
21

1

2
ku(

i52

4

(
j5 i11

5

~u i j2u0!
2,
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where atom 1 is the nitrogen, and atoms 2–5 are the hydro-
gens,u i j is the angle formed by hydrogen atomsi and j and
the nitrogen atom,u0 is the H–N–Hangle in a perfect tet-
rahedron, and r 051.9467 Bohr. The force constants,
kNH50.351 Hartree/~Bohr!2 andku50.137 Hartree, are given
by Herzberg.24 The harmonic force-field potential for NH4

1

yields vibrational frequencies of 1493, 1692, 3045, and 3193
cm21. These values compare favorably with the experimen-
tal frequencies of 1398, 1699, 3047, and 3129 cm21.25

B. Simulated annealing

The search for the isomers of the NH4Cl clusters has
been carried out using the method of simulated annealing.
This method has been used previously to locate the isomers
of other systems. The basic idea of simulated annealing is to
take a system at high temperature and gradually cool the
system until the global minimum or a local minimum on the
potential energy surface is attained. If the cooling is per-

TABLE I. The parameters used in the model potential.a

Pair Ai j a i j C6 D12

H–Hb,c 1.0162 1.9950 2.9973 2021.01
N–Nd 104.74 1.5611 25.393 0
Cl–Cld 125.55 1.7489 113.68 0
H–Ne 10.318 1.7780 8.7229 0
H–Clb 0 0 10.033 43884.0
N–Cle 114.22 1.6550 53.736 0

aUnits of energy in Hartree and units of length in Bohr.
bReference 18.
cReference 19.
dReference 17.
eCombining rules.
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formed adiabatically, the system will find the global mini-
mum. Using a finite cooling rate allows the system to be-
come trapped in local minima, yielding information about
the various isomers.

In this work we use a Brownian dynamics
approach.13,26,27Starting with chloride and ammonium ions
randomly distributed in a fixed volume, the system is propa-
gated in time according to the Langevin equation. As the
temperature is decreased, the kinetic energy is drained from
the system. When the temperature finally reaches 0 K, the
friction term in the Langevin equation drains the remaining
kinetic energy from the system, leaving it in some local
minimum.

For the smaller clusters the number of isomers is man-
ageable, and the lowest energy isomer for each cluster size
can be identified from the Brownian dynamics simulations.
For the larger clusters, however, the number of isomers be-
comes overwhelming, making it increasingly difficult to
identify the lowest energy isomer. We use the J-walking
Monte Carlo simulations described below to confirm that the
lowest energy isomer is correctly identified. Because the
J-walking Monte Carlo simulations are expected to be fully
ergodic, the cluster will be in its lowest energy isomer as the
simulation temperature approaches 0 K.

Unlike the Monte Carlo simulations, we do not assume
rigid ammonium ions in the Brownian dynamics simulations.
In most cases the differences between the structures deter-
mined by Brownian dynamics and the corresponding rigid-
ammonium structures are small. The main differences con-
sist of slight distortions of the ammonium ions away from
tetrahedral geometries and slight distortions of the entire
cluster. To find the rigid-ammonium structures from their
fully relaxed counterparts, we take the fully relaxed structure
and carry out an additional Brownian dynamics simulation at
0 K. During this simulation, force constantskNH and ku in
Eq. ~3! are gradually increased until the N–H bond distances
and H–N–Hangles are almost at their equilibrium values.
Next, the ammonium ions are replaced with perfect tetrahe-
dra, and the energy is further minimized with Monte Carlo
moves. All isomers that we have found for~NH4Cl!3 and
~NH4Cl!4, along with the lowest energy isomers for the re-
maining cluster sizes are presented in Section III.

C. J-Walking

It has been seen in several systems that if isomers are
separated by high potential energy barriers, Monte Carlo
simulations using the ordinary Metropolis move strategy15

can result in non-ergodic sampling of configuration space,
leading to large errors in calculated averages. This problem
can be most acute in the intermediate temperature range at
the onset of isomerization. Calculated quantities that suffer
most severely from the non-ergodicity of Metropolis Monte
Carlo are the quantities involving energy fluctuations, such
as the constant-volume heat capacity, CV , given by

CV

kB
5
3

2
n1

^V2&2^V&2

~kBT!2
, ~4!

where^V2& and ^V&2 are the average of the square and the
square of the average of the potential energy, respectively,
T is the temperature,n is the number of particles, andkB is
the Boltzmann constant.

The non-ergodicity of the random walk can be alleviated
using a move strategy called J-walking. J-walking combines
ordinary Monte Carlo moves with jump attempts to configu-
rations in an ergodic distribution at a higher temperature. We
discuss briefly J-walking here and refer the reader to original
papers for detailed descriptions.1,2

For clusters, ordinary Metropolis sampling is normally
adequate only for high and low temperatures. At high tem-
peratures, the system is in a fluid-like state, and the combi-
nation of high temperature and large Monte Carlo step size is
sufficient to overcome barriers among the potential energy
wells. On the other hand, only the global minimum is ther-
mally accessible at low temperatures and Metropolis sam-
pling about the global minimum is sufficient. The intermedi-
ate temperature range presents a problem for Metropolis
sampling because the barriers separating the cluster isomers
can result in transitions between potential minima with in-
sufficient frequency.

The main idea behind J-walking is to use information
about the potential surface obtained in a high temperature
simulation. A walker at a lower temperature executes an or-
dinary Monte Carlo walk, occasionally attempting jumps to
configurations at the higher temperature where the walk is
ergodic. Each distinct isomer is sampled adequately with the
ordinary Metropolis move strategy, and the occasional jumps
to the high temperature distribution ensure that all isomers
are included with the proper frequency. Details can be found
in the original literature.1,2

In practice, J-walking can be implemented in two ways,
each with its own set of drawbacks. The first approach uses
tandem walkers, one at a high temperature where Metropolis
sampling is ergodic, and one or multiple walkers at lower
temperatures. The configurations generated by the high tem-
perature walker are used by the lower temperature walkers
for attempting J-walking moves. This tandem approach has
been used infrequently because correlations inherent in the
Metropolis walks can introduce systematic errors in the
J-walking results.

The second approach writes the configurations from the
simulation at the J-walking temperature to an external file
and accesses configurations randomly from the external file
while carrying out a simulation at the lower temperature.
Correlation errors are avoided with external configuration
files because of two features in this approach. First, as dis-
cussed in Ref. 3, by writing configurations to an external file
infrequently~about once every 40–100 moves!, the correla-
tions are partially broken. Second, because correlations still
persist between configurations separated by 40–100 moves,
it is also necessary to access the external files randomly. The
difficulty with this approach is the storage requirements for
the external distributions. The large storage requirements
have limited the application of the method only to small
systems.
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D. Parallel strategy

As we discussed above, J-walking can be implemented
using either tandem walkers or previously generated external
distributions. The best features of these two approaches can
be combined into a single J-walking algorithm with the use
of multiple processors and the parallel virtual machine
~PVM! software package.16 PVM enables processes running
on the same or different machines to exchange information
while they are executing. We incorporate the PVM subrou-
tines into the Monte Carlo computer code, where these sub-
routines are used to send and receive configuration geom-
etries and potential energies of the clusters.

Using a multiple-processor computing environment, we
can execute a separate Monte Carlo walk on each processor,
with PVM enabling these Monte Carlo walks to communi-
cate with each other. Instead of generating external distribu-
tions and storing them before the actual simulation, we gen-
erate the required distributions ‘‘on the fly’’ and pass them to
the lower-temperature walkers. The walker accepts or rejects
the configuration it receives based on Eq.~5! of Ref. 1.

Our computational scheme consists of two kinds of
Monte Carlo processes, the configuration generating pro-
cesses and the computing processes. The generating pro-
cesses are designed to be a source of ergodic distributions at
particular temperatures. Each set of computing processes car-
ries out Monte Carlo walks at temperatures below that of the
generating process, periodically jumping to a configuration
provided by the generating process to maintain ergodicity.

A diagram of a model PVM J-walking simulation is
shown in Fig. 1. Each box represents a process in a parallel
machine executing a Metropolis simulation at a particular
temperature. The set of boxes on the left-hand side of Fig. 1
represents the generating processes, executing walks at tem-
peratures T1 , T2 , and T3 . T1 is assumed to be sufficiently
high that Metropolis Monte Carlo is ergodic without modifi-
cation. The set of boxes on the right-hand side of Fig. 1
represent the computing processes. The necessity of having
the generating processes running at different generating tem-
peratures is precisely analogous to generating external distri-
butions at these temperatures in a J-walking simulation using
the serial algorithm.1 As in the serial J-walking method, a
new distribution is needed when the jump acceptance rate
falls below 10%–15%. The generating processes at T2 main-
tain their ergodicity just like the computing processes by
making jump attempts to configurations contained in the T1

processes. In turn, the T2 processes serve as sources of er-
godic distributions for computing processes executing at
temperatures between T2 and T3 . Additionally the generat-
ing processes at T3 are made ergodic by periodic jumps to
the configurations contained in the T2 processes. If still
lower temperature generating processes are needed, this pro-
cedure can be continued. It is important to note that four
processes are executed at each generating temperature. The
four downward arrows from T1 to T2 and from T2 to T3
denote that the generating processes at each temperature are
independent of each other. The boxes on the right-hand side
of Fig. 1 represent the computing processes. The thick ar-

rows pointing from the generating processes to the comput-
ing processes indicates that each of the four generating pro-
cesses is feeding configurations to each computing process.

The reason for having four generating processes at each
temperature instead of just one is the following. The bottle-
neck of this algorithm is the frequency at which a generating
process can pass a configuration to a computing process or to
a lower-temperature generating process. This frequency must
be kept sufficiently low to allow the Monte Carlo simulation
at the generating temperature ample opportunity to alter the
configuration of the system. Previous J-walking studies of
Lennard-Jones clusters have shown that a configuration can
be saved once every 40–100 Monte Carlo passes, depending
on the size of the cluster.3 It has also been determined that a
computing process should attempt jumps to the ergodic dis-
tribution as often as once every 10–15 passes. We can main-
tain the 10–15 pass criterion in the computing process by
having each computing process access four independent gen-
erating processes. The result is that each generating process
is accessed once every 60 moves, but since there are four, the
computing process can attempt a jump to one of the four
generating processes once every 15 moves. In tests per-
formed on ~NH4Cl!9 , storing a configuration every 100
passes instead of every 60 did not affect the calculated heat
capacity. The computing time is reduced by a factor of 4 in
the case where the number of processors is not limited.

As in the serial algorithm there are correlations in the
Metropolis walks of each generating process that must be
broken. To break the correlations, each configuration-

FIG. 1. Diagram of a sample PVM J-walking process. Boxes on the left-
hand side represent the generating processes, boxes on the right-hand side
represent the computing processes, and arrows indicate the direction in
which configurations are passed from the generating processes.
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generating process keeps an array of configurations in
memory. When a configuration is transmitted to a lower-
temperature process, it is a configuration randomly chosen
from this array, not the current configuration of the walker.
The current configuration of the walker then replaces the
configuration just passed from the array to another processor.
The minimum size for this array has been found to be 2500
configurations from tests on the~NH4Cl!9 cluster. In all cal-
culations presented below, a 5000-configuration array is
used. Compared to array sizes of at least 50000 configura-
tions used in the serial algorithm, the arrays in the parallel
method are small and do not inhibit applications of the
method to large systems.

An issue that must be addressed is the initiation of the
5000-configuration array at each generating temperature
T1 , T2 , etc. We have examined two approaches. One ap-
proach is to create the arrays during the computation. The
startup time required to populate the configuration arrays se-
quentially can be prohibitively long. For example, the com-
puting processes between T1 and T2 and the generating pro-
cesses at T2 must wait until the 5000-configuration arrays at
T1 are created. The other approach, which we have found to
be more useful, is to create the small 5000-configuration dis-
tributions using serial J-walking prior to the PVM calcula-
tion. The initiating walks are short and require storage of
arrays of only 5000 configurations. This approach allows the
most efficient use of the multi-processor computing environ-
ment because there are no idle processors at any time during
the PVM calculation.

For the computations in the present work the typical
number of Monte Carlo passes for each temperature point is
1.5 million for cluster sizes 4–10. During each run, 105

J-walking attempts are made. The calculations for the
~NH4Cl!3 cluster consist of 3 million moves for each run and
5 3 104 J-walking attempts. A typical PVM J-walking simu-
lation for the larger ammonium chloride clusters requires a
total of about 90 processes to span the entire temperature
range of interest. For these calculations, 45 individual pro-
cessors are used, with two processes executing on each pro-
cessor.

E. Locating transition states

Although the energies and geometries of local minima
on the multi-dimensional potential energy surface of a clus-
ter are important determining factors for the onset of isomer-
ization, a crucial role is also played by the height of the
potential energy barriers separating the minima. Determining
the height of these barriers entails the search for the transi-
tion states on the potential energy surface.

We use two methods to search for transition states. The
first method is an approach previously developed to find the
transition states of Lennard-Jones clusters.28 Briefly, transi-
tion states are located by constructing double-ended classical
trajectories that connect a pair of local minima. The trajec-
tories are located by expressing the path between two iso-
mers of interest with a Fourier expansion about a constant-
velocity path. The Fourier coefficients are then determined,

yielding a trajectory with a particular total energy. The de-
tails of finding the Fourier coefficients are given
elsewhere.28,29 The trajectory with the lowest total energy is
usually found to pass through or near the transition state,
identified by having exactly one negative eigenvalue in its
Hessian matrix.

The other method used in locating the transition states is
the eigenmode-following technique initially proposed by
Hildenbrand30 and developed further by other workers.31

More recently, Tsai and Jordan6 and Waleset al.9 have em-
ployed this method to locate transition states of atomic and
molecular clusters. Briefly, a search is conducted by starting
at a local minimum and following one of the normal modes
by maximizing the potential energy along that particular
mode while minimizing the potential energy along the re-
maining normal modes, until a transition state is reached.

For the case of~NH4Cl!4 and ~NH4Cl!9 we are con-
cerned with rotational barriers of the ammonium ions. The
double-ended trajectory method for finding transition states
is ideally suited to these motions because of their simplicity.
For the more complex transition states of the~NH4Cl!3 clus-
ter connecting distinct isomers we use the eigenmode-
following method. The double-ended trajectory method is
unable to locate the transition states between the isomers of
the trimer with a low number of Fourier expansion coeffi-
cients. To apply the double-ended trajectory approach to a
case with a complex rearrangement, a large number of Fou-
rier coefficients is required to describe the path of the system
between the two minima, making the method computation-
ally expensive. Rather than pursuing the transition state
search with the double-ended method, we have opted to use
the eigenmode-following method in the transition state
searches in~NH4Cl!3 .

III. RESULTS

A. Structures

The ammonium chloride monomer is known32 to be a
van der Waals complex rather than an ionic species and can-
not be treated using the model potential of Section II A. We
do not investigate~NH4Cl!2 because it has only a single iso-
mer and is not expected to exhibit interesting thermodynamic
behavior. We assume that all clusters in this work are ionic.
The cluster size at which there is a transition from van der
Waals to ionic bonding represents an interesting and com-
plex electronic structure problem that is beyond the scope of
this work.

We begin our discussion of the ammonium chloride
cluster structures with~NH4Cl!3 , for which we have found
three isomers with our potential model. These three isomers,
located with the simulated annealing procedure described in
the previous section, are shown in Figs. 2~a!, 2~c!, and 2~e!.
Structures~b! and ~d! in Fig. 2 are the transition states con-
necting~a! with ~c! and ~a! with ~e!, respectively. The tran-
sition states shown in Figs. 2~b! and 2~d! are determined
using the full potential, including the internal vibrations of
the ammonium ions. Because our transition state search
methods determine the transition states using the full poten-
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tial, all transition state barriers reported in this work are cal-
culated relative to the potential energy minima of the full
potential. The corresponding transition state barriers for the
structures with rigid ammonium ions are expected to be
roughly the same. Interestingly, isomers~a! and ~c! are so

close to each other in energy that isomer~c! becomes the
lowest energy isomer if the full potential is used and the
ammonium ions are allowed to relax fully.

Figures 3~a!–3~f! show the isomers we located for the
~NH4Cl!4 cluster in the order of increasing potential energy.

FIG. 3. All discovered isomers found for~NH4Cl!4 , ~a! is the lowest energy isomer atV 5 20.98950 eV, the energies for the remaining isomers are given
relative to the lowest energy isomer:~b! 13485 K,~c! 13844 K,~d! 16590 K,~e! 18535 K,~f! 18900 K.

FIG. 2. ~NH4Cl!3 ~a! is the lowest energy isomer,V 5 20.69206 eV,~c! is the isomer 235 K above~a!, ~e! is the isomer 635 K above~a!, ~b! is the transition
state connecting~a! with ~c!, 2118 K above~a!, ~d! is the transition connecting~a! with ~e!, 2021 K above~a!. The energies of the minima are determined using
Eq. ~1!. The transition state barriers include intramolecular contributions from Eq.~2!.
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There is a qualitative difference in structure between the
lowest isomer~a! and the remaining isomers~b!–~f!. The
lowest energy isomer has a compact rock-salt structure while
the remaining isomers have open-type structures. Unlike
~NH4Cl!3 , in which all three isomers are close to each other
in energy, there is a 13485 K gap separating the two lowest
lying isomers of the tetramer,~a! and ~b!.

Figure 4 shows the lowest energy isomers for clusters
sizes 5–10. It is interesting to note the trend in the growth
pattern for the clusters with an even number of ion pairs.
Beginning with ~NH4Cl!4 ~see Fig. 3~a!!, each successive
even-number cluster is formed via the addition of an identi-
cal ~NH4Cl!2 unit. The odd-number clusters do not show a
pattern of formation from either the smaller odd-number
cluster or the preceding even-number cluster.

The relative stability of the even-number clusters versus
the odd-number clusters can be compared by examining the
gain in binding energy of the lowest energy isomer,
DV5Vn212Vn as a function of the cluster sizen, where
Vn is the potential energy of the lowest energy isomer of
size,n. The trend observed in Fig. 5 clearly shows that the

gain in potential energy is greater when going from an odd to
an even cluster, except for~NH4Cl!9 . The deviation of
~NH4Cl!9 from the observed trend can be understood by ex-
amining its geometry, shown in Fig. 4~e!. The ~NH4Cl!9
cluster forms a rock-salt structure that has more in common
with the even-number clusters than with the other odd-
number clusters.

B. Heat capacities

The constant-volume heat capacity curve for~NH4Cl!3 is
shown in Fig. 6. The error bars in this and all subsequent
heat capacity curves represent two standard deviations. Also,
only the potential energy contribution to the heat capacity is
shown in this and all subsequent heat capacity curves, i.e.,
we set

Cv5
^V2&2^V&2

~kBT!2
. ~5!

There are no additional structural features from the constant
kinetic energy contribution in Eq.~4!. The curve starts at
approximately 10.5, the equipartition value for the trimer,
undergoes a slow increase in the 0–80 K range, then rises
rapidly to a peak at 140 K, and finally the heat capacity
declines gradually over the remaining temperature range.
The presence of an early peak in the heat capacity is a direct
consequence of the small differences in energy among the
isomers.

We have found that during the simulation at 50 K all
configurations are in the potential energy wells belonging to

FIG. 4. The lowest energy isomers for~NH4Cl!n , n 5 5–10; ~a! n
5 5, V 5 21.22880 eV,~b! n 5 6, V 5 21.519387 eV,~c! n 5 7, V
5 21.76779 eV,~d!n5 8, V5 22.05161eV,~e!n5 9, V5 22.31868eV,
~f!n5 10,V5 22.58333eV.

FIG. 5. DV 5 Vn212Vn as a function ofn, for the lowest energy isomers.
The gain in binding energy for the even clusters is generally greater than the
gain for the odd clusters.
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isomers~a! and~e! in Fig. 2, and none are found in the well
belonging to isomer~c!. At 250 K, less than 0.03% of con-
figurations are found in the well of isomer~c!. The isomers
occupied during a finite-temperature simulation are identified
using the nitrogen–chloride distances and the angle between
the planes defined by the nitrogens and the chlorides. Since
the absence of structures belonging to the potential energy
well of isomer~c! is clearly not a consequence of energetics,
we have determined transition state barriers between isomers
~a! and~c! and between isomers~a! and~e!. These transition
state geometries are shown in Figs. 2~b! and 2~d!, respec-
tively. As discussed in Section III A and listed in Fig. 2, the
transition state barriers in both cases are about 2000 K above
isomer ~a!. The difference in the potential energy barrier
heights does not appear to be the reason for the extremely
rare occurrence of isomer~c! in our simulations. One pos-
sible explanation for the small contribution of structures be-
longing to the potential well of isomer~c! may be the small
fraction of configuration space available to the isomer. A
normal mode analysis of isomers~a! and~c! has revealed that
the lowest vibrational frequency of isomer~a! is approxi-
mately one-half of the the corresponding frequency of iso-
mer ~c!. Furthermore, the lowest vibrational frequency of
isomer ~e! is one-third of the corresponding frequency of
isomer~c!. The frequencies of the first six vibrational modes
of isomer~a! are 36, 41, 57, 67, 86, and 94 cm21. For isomer
~c! these are 74, 76, 107, 150, 159, and 163 cm21, and for
isomer ~e!, the frequencies are 26, 26, 36, 42, 42, and 54
cm21. Although this difference in normal mode frequencies
is not a direct measure of the relative fraction of configura-

tion space occupied by the respective isomers, it is nonethe-
less a reflection of the narrowness of the potential energy
well of isomer~c! relative to isomers~a! and ~e!.

The heat capacity curve for the~NH4Cl!4 cluster, shown
in Fig. 7, is significantly different from that of~NH4Cl!3 in
Fig. 6. The peak in the~NH4Cl!4 heat capacity occurs at
1100 K. The heat capacity increases slowly until 800 K, at
which point it rises rapidly to the aforementioned peak at
1100 K. By examining the structures of~NH4Cl!4 during the
simulations, we have found that this large peak is a conse-
quence of isomerization transitions to the open structures
shown in Fig. 6. For~NH4Cl!4 and the remaining clusters we
shall define the ‘‘melting transition region’’ to be the range
of temperatures where isomerizations to such open structures
take place. Another feature of the heat capacity curve shown
in Fig. 7 is its almost flat slope in the 400–700 K region.
This particular feature is present in most of the cases studied
in this paper. As we shall discuss in the context of
~NH4Cl!9 , the temperature region whereCv is flat is the
region where the NH4

1 ions are nearly freely rotating. Using
the method of double-ended classical trajectories, the barrier
for rotation of a NH4

1 ion about the N–H bond pointing
outward from the cluster has been determined to be 4300 K.

The heat capacity curve for~NH4Cl!5 is shown in Fig.
8~a!. It has qualitative similarities to the~NH4Cl!4 heat ca-
pacity shown in Fig. 7 with a melting peak in the 1000–1100
K region. The melting peak is, however, significantly smaller
relative to theT 5 0 K heat capacity than in~NH4Cl!4 . This
is a trend that we observe for all the odd-number clusters,
with the exception of~NH4Cl!9; namely the ratio of the
maximum heat capacity relative to theT 5 0 K value is sig-
nificantly larger for the even-number clusters than for odd-
number clusters.

Unlike the tetramer,~NH4Cl!5 has several low-energy
isomers. Isomerization in~NH4Cl!5 is seen at significantly
lower temperatures than in the tetramer. The isomerization at
the lower temperatures in~NH4Cl!5 occurs among isomers
with compact structures, two of which are shown in Figs.
9~a! and 9~b!. Figures 9~c! and 9~d! show examples of
higher-energy open structures of~NH4Cl!5 . The open-type
structures are at least 12000 K above the lowest-energy iso-
mer and become accessible in the vicinity of the 1000–1100
K melting peak. In contrast, only the lowest energy isomer of
~NH4Cl!4 has a compact structure and the remaining isomers
are all high energy open structures~see Fig. 3!.

Figure 8~b! shows the heat capacity curve for
(NH4Cl!6 , and the lowest energy isomer is shown in Fig.
3~b!. The heat capacity curve is similar to that of
~NH4Cl!4 . The region between 500 K and 800 K is remark-
ably flat, and the melting peak at 1200 K is sharp compared
with ~NH4Cl!5 . ~NH4Cl!6 has at least one other low-energy
isomer~not shown!. These low-energy isomers of~NH4Cl!6
are 2051 K apart and isomerization between them is seen at
temperatures as low as 400 K. The remaining isomers found
in this work are open-type structures and are in the range of
12000–14000 K above the lowest energy isomer, becoming
accessible at temperatures near the melting peak.

The lowest energy isomer for the~NH4Cl!7 cluster is

FIG. 6. The potential energy contribution to the constant-volume heat ca-
pacity for ~NH4Cl!3 as a function ofT.

8697Matro, Freeman, and Topper: Simulations of NH4Cl clusters

J. Chem. Phys., Vol. 104, No. 21, 1 June 1996



shown in Fig. 3~c!. The heat capacity curve, shown in Fig.
8~c!, is the only curve in this study that clearly exhibits two
distinct peaks. The first peak occurs around 600 K and is in
the same region where other cluster sizes~most notably 4, 6,
8, and 9! show a flat region. In this case, however, the peak
at 600 K is a result of isomerization between the global mini-
mum and a local minimum approximately 2000 K above the
global minimum. The second peak, centered at about 1200
K, is a melting peak indicating the onset of isomerization to
open-type structures.

To investigate further the origin of the 600 K peak in the
heat capacity of~NH4Cl!7, we have performed quench stud-
ies of the configurations obtained from the simulations at
temperatures of 425, 600, and 800 K. At each temperature,
configurations were taken each 750 Monte Carlo passes, and
400 configurations at each temperature were quenched to the
nearest local minimum using Brownian dynamics. At 425 K,
well before the peak in the heat capacity, almost all 400
configurations from an ergodic distribution quench to the
lowest energy isomer. The dominance of the lowest energy
isomer is reflected in the large peak in the histogram in Fig.
10~a! at 0 K and the small peaks representing higher energy
isomers~the energies of the isomers in Fig. 10 are given
relative to the lowest energy isomer defined to be 0 K!. At
600 K ~Fig. 10~b!! slightly more than half of the configura-
tions quench to the lowest energy isomer, with the majority
of remaining configurations distributed between two isomers
830 K and 2194 K above the lowest energy isomer. The
time-scale for isomerization at 600 K is still slow, corrobo-
rated by examining configurations of the~NH4Cl!7 cluster
saved during the simulation. The infrequent isomerization
events result in large fluctuations in the potential energy,
leading to a peak in the heat capacity at 600 K. Finally, at
800 K ~see Fig. 10~c!! two isomers are seen to dominate the
histogram with roughly equal populations. Rapid isomeriza-
tion near 800 K leads to the observed decrease in the heat
capacity. The second peak at 1200 K is the melting peak.

To determine the features of~NH4Cl!7 that are unique in
this series, we compare the energetics of the clusters.
~NH4Cl!4 has only one compact structure, the global mini-
mum ~see Fig. 3!, and the rest of the isomers are at least
13000 K higher in energy.~NH4Cl!5 has a few low-energy
isomers~see Fig. 9!, but there is a large gap between the
group of low-energy isomers and the group of open-type
higher energy isomers.~NH4Cl!6 has just one other low en-
ergy isomer in addition to the global minimum, and the en-
ergy difference between the two low energy isomers in
~NH4Cl!6 is roughly the same as the difference between the
two isomers of~NH4Cl!7 that dominate the histogram in Fig.
10~c!. However, in contrast to the case of
~NH4Cl!7, ~NH4Cl!6 does not have any other low-energy iso-
mers. The melting peak in~NH4Cl!6 , as in the other even-
number clusters, is significantly larger compared to theT
5 0 K heat capacity than in the odd-number clusters. Any
decline in the heat capacity accompanying the onset of rapid
isomerization between the two low-lying isomers of
~NH4Cl!6 is masked in the 800 K region by the melting peak.
Conversely, the melting peak in the heat capacity of

~NH4Cl!7 is small and does not mask the drop in the heat
capacity.

The structure ~Fig. 3~d!! and the heat capacity of
~NH4Cl!8 ~Fig. 7~d!! are similar to those of~NH4Cl!6 ~see
Figs. 3~b! and 7~b!, respectively!. The slope of the curve in
the 500–800 K ‘‘shoulder’’ region is not as flat as in the case
of ~NH4Cl!6 . Similar to ~NH4Cl!6 , there are a few low-
energy isomers with compact structures accessible at lower
temperatures, and the majority of isomers are higher-energy
open-type structures that become accessible in the vicinity of
the melting peak.

The ~NH4Cl!9 cluster, shown in Fig. 3~e!, has more in
common with the even-number clusters than it does with the
odd-number clusters. The structure of~NH4Cl!9 is slab-like,
reminiscent of rock-salt structure of NaCl. The heat capacity
curve, shown in Fig. 7~e!, shows a flat region in the 400–800
K region and a large melting peak at about 1100 K. An
interesting feature of the~NH4Cl!9 cluster is the low rota-
tional barrier of the ammonium ion in the center of the clus-
ter. The center ammonium ion has 12 identical potential en-
ergy minima as it rotates by 360 degrees, and the barrier to
rotation between each pair of minima is only 48 K. Although
we can see the center ammonium ion hopping between dif-
ferent minima at temperatures as low as 5 K, the contribution
of this motion to the heat capacity is small and masked by
the steady rise in the heat capacity from the anharmonic vi-
brational motions in the rest of the cluster.

We have claimed that the main contributing factor to the
appearance of a temperature region where the slope ofCv is

FIG. 7. The potential energy contribution to the constant-volume heat ca-
pacity for ~NH4Cl!4 as a function ofT. The maximum at 1100 K is defined
to be a melting peak.
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small is the onset of free rotation of the ammonium ions. As
a qualitative test of this claim we carry out two additional
Metropolis Monte Carlo simulations in this temperature
range for ~NH4Cl!9 . In the first simulation, only the rota-
tional Monte Carlo moves are allowed, with the translational
moves of the ammonium and chloride ions excluded from
the simulation. In the second simulation, the translational
moves of the ammonium and chloride ions are included, but
the rotational moves of the ammonium ions are not allowed.
It must be stressed that this calculation has been done to
demonstrate qualitatively the effects of the onset of free ro-
tation on the heat capacity. The two curves are shown in Fig.
11. The upper curve is the heat capacity resulting from the
translational moves, and the lower curve includes only rota-
tions. The upper~translational! curve increases through the
entire temperature range in Fig. 11. The lower~rotational!
curve rises to a maximum at about 600 K and then undergoes

a decrease. The increase in the rotational contribution to the
heat capacity coincides with the ammonium ions undertaking
infrequent hops between the equivalent orientations. Above
600 K, however, the motions of the ammonium ions are
more representative of free rotation rather than hops, which
is consistent with the decreasing rotational contribution to
the heat capacity. We have confirmed this by examining the
configurations of the~NH4Cl!9 cluster at several tempera-
tures throughout the flat region of the heat capacity. The
rotational barrier of a corner ammonium ion is 2908 K, and
the rotational barrier of a side ammonium ion is 1948 K.
Both of these values are consistent with the onset of free
rotation at 600 K. The sum of the rotational and translational
contributions is nearly flat as in the fullCv curve shown in
Fig. 8~e!.

The heat capacity for the remaining cluster in the study,
~NH4Cl!10, is shown in Fig. 8~f! and the lowest-energy iso-

FIG. 8. The potential energy contribution to the constant-volume heat capacities for~NH4Cl!n , n 5 5–10, where~a! n 5 5, ~b! n 5 6, ~c! n 5 7, ~d! n 5 8, ~e!
n5 9, and~f! n5 10.
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mer is shown in Fig. 3~f!. The heat capacity rises steadily,
reaches its maximum at 700 K and then slowly decreases
with increasing temperature. There is a change in slope in the
1000–1200 K region, where clusters of size 4–9 exhibit a
well-defined peak.

IV. CONCLUDING REMARKS

In this paper we have presented a study of structures and
temperature-dependent thermodynamic properties of
~NH4Cl!n clusters,n 5 3–10. The structures have been deter-
mined using the approach of simulated annealing, and the
constant-volume heat capacities have been computed using a
newly developed parallel PVM J-walking algorithm.

The lowest energy isomers of the even-number clusters
form similar slab-like structures~see Figs. 3~a!, 4~b!, 4~d!,
and 4~f!!. The lowest-energy isomers of the odd-number
clusters~see Figs. 2~a!, 4~a!, 4~c!, and 4~e!! generally do not
show a clear similarity with either the preceding even-
number cluster or the previous odd-number cluster.

We can compare our results to the structures of
~NaCl!n clusters determined by Phillipset al.7 For ~NaCl!3,
only one isomer is found, compared to three for~NH4Cl!3 .
The structure of~NaCl!3 is a planar ring, similar to the high-
est energy isomer of~NH4Cl!3 , shown in Fig. 2~e!. A close

examination of the~NH4Cl!3 isomer shown in Fig. 2~c! to-
gether with the absence of such a structure in~NaCl!3 sug-
gests that the~NH4Cl!3 isomer shown in Fig. 2~c! is stabi-
lized by the attractive hydrogen-chloride interactions. The
geometries of the lowest energy isomers for~NaCl!n ,n
5 4,7,8,10 are similar to the geometries of the lowest energy
isomers that we find for the respective~NH4Cl!n clusters. For
the remaining isomers,n 5 5, 6, and 9, the geometries of the
second lowest isomers of~NaCl!n are similar to those of the
lowest energy isomers of~NH4Cl!n . In the work of Diefen-
bach and Martin,33 lowest energy isomers are identified for
several alkali halide clusters. They find that the lowest en-
ergy isomer geometries are dependent on both the constitu-

FIG. 9. ~a! and ~b! are examples of compact structures of~NH4Cl!5 , with
energies of 160 K and 773 K above the lowest-energy isomer, and~c! and
~d! are examples of open-type structures, with energies 12850 K and 15079
K above the lowest energy isomer, respectively.

FIG. 10. Histograms of isomer distribution for~NH4Cl!7 at ~a! 425 K, ~b!
600 K, and~c! 800 K. The units of potential energyV in these graphs are
degrees K above the potential energy of the lowest energy isomer. The
variableN is the number configurations in a Monte Carlo walk whose near-
est local minimum on the potential energy surface has potential energyV.
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ent ions and the potential model used. It is noteworthy that
unlike bulk ammonium chloride crystal, for which the ce-
sium chloride structure is thermodynamically stable, we have
found no cesium chloride type structures in the clusters. The
cluster size at which the cesium chloride structure begins to
appear represents an interesting problem.

A major thrust of this paper is the development of the
parallel J-walking algorithm with the use of parallel virtual
machine ~PVM! package. The ability to maintain the
J-walking distributions dynamically at each required tem-
perature makes it possible to perform an ergodic Monte
Carlo simulation spanning the entire temperature range of
interest. The PVM J-walking algorithm is designed to take
full advantage of a multi-processor computing environment.
Ergodic simulations spanning the entire temperature range of
interest require the same amount of time as a single Me-
tropolis Monte Carlo simulation, provided that a separate
processor can be assigned to each process in a PVM algo-
rithm. PVM is designed to be most efficient when the pass-
ing of information among the different processes is infre-
quent. In that respect, PVM is ideally suited for J-walking
simulations because the most frequent jumps are made only
once every 15 passes in the computing processes. The PVM
J-walking algorithm does not require the storage of large
external configuration files needed in the serial algorithm,
and ergodic Monte Carlo simulations can be performed on
significantly larger systems than possible previously.

The constant-volume heat capacities for each cluster size

have been determined, revealing two important temperature
regions. The first region, seen most prominently in the
~NH4Cl!n , n 5 4, 6, 8, and 9 clusters, is the flat region in the
500–800 K vicinity. This flat region in the heat capacity is
apparently a consequence of competing contributions from
rotational motion of the ammonium ions and the anharmonic
vibrational motion in the clusters. The other feature of the
heat capacity curves for the majority of the clusters is the
prominent maximum in the 1000–1200 K range that we have
called a melting peak. This peak coincides with isomeriza-
tion to open-type configurations. Cluster geometries at tem-
peratures below 1000 K are normally dominated by compact
structures belonging to potential energy wells of low lying
isomers.

Future work on ammonium chloride clusters will be di-
rected toward a quantum mechanical treatment of this sys-
tem. J-walking has already been extended to quantum sys-
tems by incorporating it into the Fourier path integral Monte
Carlo method.2 Realistic inclusion of all degrees of freedom
in this system cannot be accomplished using classical me-
chanics because of the intrinsic quantum-mechanical nature
of the internal vibrations of the ammonium ions. As an ex-
ample of the potential importance of quantum contributions,
it can be anticipated that the quantum-mechanical treatment
will have a significant effect on the heat capacity curve of the
~NH4Cl!3 cluster because the differences in zero-point ener-
gies of the isomers can be expected to rearrange the ordering
and change the energy spacings between the isomers. Fur-
thermore, significant isotope effects are known in the bulk
system, implying the importance of quantum effects in the
clusters.34
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