475 research outputs found

    Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Get PDF
    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes

    Ammonia Emission, Manure Nutrients and Egg Production of Laying Hens Fed Distiller Dried Grain Diets

    Get PDF
    A USDA Natural Resources Conservation Service, Conservation Innovation Grant project coordinated by the United Egg Producers (UEP) conducted concurrent demonstrations in Iowa and Pennsylvania (PA) at commercial laying hen facilities. The goal was to document manure nutrient and gas emission improvements through the use of dried distiller’s grain with solubles (DDGS) diets and/or other dietary modifications while maintaining or improving hen productivity. Results of the PA trial are presented here. Diets containing 10% corn DDGS with (D+P) or without (D) the probiotic Provalen™ were compared to a corn-soybean based control diet (CON). The isocaloric, amino acid balanced diets were fed to three groups of 39,800 Lohmann hens in one house. Hens were 20-65 wk of age with each diet provided to 2 of 6 rows of stacked cages with manure belts (six decks high). Feed intake, water consumption, hen body weight (BW), egg production (EP,) egg case weight, mortality, feed cost (FC), and egg income (EI) were provided weekly by the cooperating egg company. Replicated monthly data, including egg weight (EW), albumen height (AH), Haugh units (HU), yolk color (YC), shell strength (SS) and shell thickness (ST), were determined from eggs collected from six 4-cage sections of hens on each diet. Replicated monthly samples of hen manure (fresh and from storage) were analyzed for moisture and major nutrients. Ammonia (NH3) gas measurements utilized a non-steady state flux chamber method coupled with photoacoustic infrared gas analyzer. There was no clear trend in the magnitude of NH3 emissions relative to the diets within the hen house as measured on the manure belt. At 32 and 36 wks of age, NH3 emissions were significantly (P \u3c 0.10) higher in D while D+P and CON were lower and similar. At 48 and 52 wks, NH3 emissions from D were similar to D+P and significantly lower than CON. Emission rate from belt manure averaged 0.42 ±0.025 g bird-1 d-1 for all treatments and dates. There was no significant impact of diet on BW, EW, HU, SS, or ST (P =0.10 to 0.66), however, CON hens had lower EP, AH, and YC compared to D and D+P hens (P=0.05). Fresh manure total phosphorus (P2O5) was higher for CON samples (P \u3c 0.05) while other major agronomic nutrients and moisture were not significantly different among treatments. Stored CON manure samples had increased moisture and NH4-N compared to those of D and D+P treatments (P \u3c 0.10). Weekly EI minus FC averaged 6,146,6,146, 6,215, and $6,209 for the CON, D, and D+P diets, respectively

    Recent Radiation Test Results for Power MOSFETs

    Get PDF
    Single-event effect (SEE) and total ionizing dose (TID) test results are presented for various hardened and commercial power metal-oxide-semiconductor field effect transistors (MOSFETs), including vertical planar, trench, superjunction, and lateral process designs

    Recent Radiation Test Results for Trench Power MOSFETs

    Get PDF
    Single-event effect (SEE) radiation test results are presented for various trench-gate power MOSFETs. The heavy-ion response of the first (and only) radiation-hardened trench-gate power MOSFET is evaluated: the manufacturer SEE response curve is verified and importantly, no localized dosing effects are measured, distinguishing it from other, non-hardened trench-gate power MOSFETs. Evaluations are made of n-type commercial and both n- and p-type automotive grade trench-gate device using ions comparable to of those on the low linear energy transfer (LET) side of the iron knee of the galactic cosmic ray spectrum, to explore suitability of these parts for missions with higher risk tolerance and shorter duration, such as CubeSats. Part-to-part variability of SEE threshold suggests testing with larger sample sizes and applying more aggressive derating to avoid on-orbit failures. The n-type devices yielded expected localized dosing effects including when irradiated in an unbiased (0-V) configuration, adding to the challenge of inserting these parts into space flight missions

    NASA Goddard Space Flight Center's Compendium of Recent Total Ionizing Dose and Displacement Damage Dose Results

    Get PDF
    Total ionizing dose and displacement damage dose testing were performed to characterize and determine the suitability of candidate electronics for NASA spacecraft and program use

    Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    Get PDF
    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE participants were limited in what they were allowed to do at the Caliban and Silene exercises and testing of various elements of the nuclear accident dosimetry programs cannot always be performed as guests at other sites, it has become evident that DOE needs its own capability to test nuclear accident dosimeters. Angular dependence determination and correction factors for NADs desperately need testing as well as more evaluation regarding the correct determination of gamma doses. It will be critical to properly design any testing facility so that the necessary experiments can be performed by DOE laboratories as well as guest laboratories. Alternate methods of dose assessment such as using various metals commonly found in pockets and clothing have yet to be evaluated. The DOE is planning to utilize the Godiva or Flattop reactor for testing nuclear accident dosimeters. LLNL has been assigned the primary operational authority for such testing. Proper testing of nuclear accident dosimeters will require highly specific characterization of the pulse fields. Just as important as the characterization of the pulsed fields will be the design of facilities used to process the NADs. Appropriate facilities will be needed to allow for early access to dosimeters to test and develop quick sorting techniques. These facilities will need appropriate laboratory preparation space and an area for measurements. Finally, such a facility will allow greater numbers of LLNL and DOE laboratory personnel to train on the processing and interpretation of nuclear accident dosimeters and results. Until this facility is fully operational for test purposes, DOE laboratories may need to continue periodic testing as guests of other reactor facilities such as Silene and Caliban

    Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Get PDF
    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results

    Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    Get PDF
    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose
    • …
    corecore