306 research outputs found
Probing the electronic structure of new 3D Dirac semimetals
In this thesis, ARPES was used to measure the band structure of novel 3D Dirac semimetals, many of which were previously unknown concerning their electronic structure.
The main results were obtained characterizing materials of space group (SG) no. 129 and more specifically ZrSiS and related compounds
Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes
We have investigated spin-wave excitations in rolled-up Permalloy microtubes
using microwave absorption spectroscopy. We find a series of quantized
azimuthal modes which arise from the constructive interference of Damon-Eshbach
type spin waves propagating around the circumference of the microtubes, forming
a spin-wave resonator. The mode spectrum can be tailored by the tube's radius
and number of rolled-up layers.Comment: 12 pages, 4 figure
Spatially explicit estimation of heat stress-related impacts of climate change on the milk production of dairy cows in the United Kingdom
Dairy farming is one the most important sectors of United Kingdom (UK) agriculture. It faces major challenges due to climate change, which will have direct impacts on dairy cows as a result of heat stress. In the absence of adaptations, this could potentially lead to considerable milk loss. Using an 11-member climate projection ensemble, as well as an ensemble of 18 milk loss estimation methods, temporal changes in milk production of UK dairy cows were estimated for the 21st century at a 25 km resolution in a spatially-explicit way. While increases in UK temperatures are projected to lead to relatively low average annual milk losses, even for southern UK regions (<180 kg/cow), the ?hottest? 25?25 km grid cell in the hottest year in the 2090s, showed an annual milk loss exceeding 1300 kg/cow. This figure represents approximately 17% of the potential milk production of today?s average cow. Despite the potential considerable inter-annual variability of annual milk loss, as well as the large differences between the climate projections, the variety of calculation methods is likely to introduce even greater uncertainty into milk loss estimations. To address this issue, a novel, more biologically-appropriate mechanism of estimating milk loss is proposed that provides more realistic future projections. We conclude that South West England is the region most vulnerable to climate change economically, because it is characterised by a high dairy herd density and therefore potentially high heat stress-related milk loss. In the absence of mitigation measures, estimated heat stress-related annual income loss for this region by the end of this century may reach ?13.4M in average years and ?33.8M in extreme years.publishersversionPeer reviewe
Surface floating 2D bands in layered nonsymmorphic semimetals : ZrSiS and related compounds
Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357; additional support by National Science Foundation under Grant No. DMR-0703406. This work was partially supported by the DFG, proposal no. SCHO 1730/1-1.In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed on the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating or unpinned bands, which are distinct from Shockley states, quantum well states, or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between density functional theory calculations and angle-resolved photoemission spectroscopy measurements and present an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.Publisher PDFPeer reviewe
High mobility in a van der Waals layered antiferromagnetic metal
Magnetic van der Waals (vdW) materials have been heavily pursued for
fundamental physics as well as for device design. Despite the rapid advances,
so far magnetic vdW materials are mainly insulating or semiconducting, and none
of them possesses a high electronic mobility - a property that is rare in
layered vdW materials in general. The realization of a magnetic high-mobility
vdW material would open the possibility for novel magnetic twistronic or
spintronic devices. Here we report very high carrier mobility in the layered
vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1,
which is the highest among all known layered magnetic materials, to the best of
our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is
comparable to that of black phosphorus, and is only surpassed by graphite. By
mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to
ultrathin flakes of three monolayers, and that the magnetic order and
relatively high mobility is retained in approximately 20-nm-thin flakes
- …