41 research outputs found

    Distinct resting-state functional connections associated with episodic and visuospatial memory in older adults.

    Get PDF
    Episodic and spatial memory are commonly impaired in ageing and Alzheimer's disease. Volumetric and task-based functional magnetic resonance imaging (fMRI) studies suggest a preferential involvement of the medial temporal lobe (MTL), particularly the hippocampus, in episodic and spatial memory processing. The present study examined how these two memory types were related in terms of their associated resting-state functional architecture. 3T multiband resting state fMRI scans from 497 participants (60-82 years old) of the cross-sectional Whitehall II Imaging sub-study were analysed using an unbiased, data-driven network-modelling technique (FSLNets). Factor analysis was performed on the cognitive battery; the Hopkins Verbal Learning test and Rey-Osterreith Complex Figure test factors were used to assess verbal and visuospatial memory respectively. We present a map of the macroscopic functional connectome for the Whitehall II Imaging sub-study, comprising 58 functionally distinct nodes clustered into five major resting-state networks. Within this map we identified distinct functional connections associated with verbal and visuospatial memory. Functional anticorrelation between the hippocampal formation and the frontal pole was significantly associated with better verbal memory in an age-dependent manner. In contrast, hippocampus-motor and parietal-motor functional connections were associated with visuospatial memory independently of age. These relationships were not driven by grey matter volume and were unique to the respective memory domain. Our findings provide new insights into current models of brain-behaviour interactions, and suggest that while both episodic and visuospatial memory engage MTL nodes of the default mode network, the two memory domains differ in terms of the associated functional connections between the MTL and other resting-state brain networks

    Resilience and MRI correlates of cognitive impairment in community-dwelling elders.

    Get PDF
    BACKGROUND: The contribution of education and intelligence to resilience against age-related cognitive decline is not clear, particularly in the presence of 'normal for age' minor brain abnormalities. METHOD: Participants (n = 208, mean age 69.2 years, s.d. = 5.4) in the Whitehall II imaging substudy attended for neuropsychological testing and multisequence 3T brain magnetic resonance imaging. Images were independently rated by three trained clinicians for global and hippocampal atrophy, periventricular and deep white matter changes. RESULTS: Although none of the participants qualified for a clinical diagnosis of dementia, a screen for cognitive impairment (Montreal Cognitive Assessment (MoCA) <26) was abnormal in 22%. Hippocampal atrophy, in contrast to other brain measures, was associated with a reduced MoCA score even after controlling for age, gender, socioeconomic status, years of education and premorbid IQ. Premorbid IQ and socioeconomic status were associated with resilience in the presence of hippocampal atrophy. CONCLUSIONS: Independent contributions from a priori risk (age, hippocampal atrophy) and resilience (premorbid function, socioeconomic status) combine to predict measured cognitive impairment

    Sub-threshold depressive symptoms and brain structure: A magnetic resonance imaging study within the Whitehall II cohort.

    Get PDF
    BACKGROUND: Late-life sub-threshold depressive symptoms (i.e. depressive symptoms that do not meet the criteria for a diagnosis of major depressive disorder) are associated with impaired physical health and function, and increased risk of major depressive disorder. Magnetic resonance imaging (MRI) studies examining late-life major depressive disorder find structural brain changes in grey and white matter. However, the extent to which late-life sub-threshold depression is associated with similar hallmarks is not well established. METHODS: Participants with no history of major depressive disorder were selected from the Whitehall Imaging Sub-Study (n=358, mean age 69±5 years, 17% female). Depressive symptoms were measured using the Centre for Epidemiological Studies Depression Scale (CES-D) at three previous Whitehall II Study phases (2003-04, 2007-09 and 2012-13) and at the time of the MRI scan (2012-14). The relationships between current and cumulative depressive symptoms and MRI brain measures were explored using Voxel-Based Morphometry (VBM) for grey matter and Tract Based Spatial Statistics (TBSS) for white matter. RESULTS: Current sub-threshold depressive symptoms were associated with significant reductions in fractional anisotropy and increases in axial and radial diffusivity. There were no significant relationships between current depressive symptoms and grey matter measures, or cumulative depressive symptoms and MRI measures. LIMITATIONS: The prevalence (10%) of sub-threshold depressive symptoms means that analyses may be underpowered to detect subtle differences in brain structure. CONCLUSIONS: Current sub-threshold depressive symptoms are associated with changes in white matter microstructure, indicating that even mild depressive symptoms are associated with similar MRI hallmarks to those in major depressive disorder

    Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study.

    Get PDF
    Objectives To investigate whether moderate alcohol consumption has a favourable or adverse association or no association with brain structure and function.Design Observational cohort study with weekly alcohol intake and cognitive performance measured repeatedly over 30 years (1985-2015). Multimodal magnetic resonance imaging (MRI) was performed at study endpoint (2012-15).Setting Community dwelling adults enrolled in the Whitehall II cohort based in the UK (the Whitehall II imaging substudy).Participants 550 men and women with mean age 43.0 (SD 5.4) at study baseline, none were "alcohol dependent" according to the CAGE screening questionnaire, and all safe to undergo MRI of the brain at follow-up. Twenty three were excluded because of incomplete or poor quality imaging data or gross structural abnormality (such as a brain cyst) or incomplete alcohol use, sociodemographic, health, or cognitive data.Main outcome measures Structural brain measures included hippocampal atrophy, grey matter density, and white matter microstructure. Functional measures included cognitive decline over the study and cross sectional cognitive performance at the time of scanning.Results Higher alcohol consumption over the 30 year follow-up was associated with increased odds of hippocampal atrophy in a dose dependent fashion. While those consuming over 30 units a week were at the highest risk compared with abstainers (odds ratio 5.8, 95% confidence interval 1.8 to 18.6; P≤0.001), even those drinking moderately (14-21 units/week) had three times the odds of right sided hippocampal atrophy (3.4, 1.4 to 8.1; P=0.007). There was no protective effect of light drinking (1-<7 units/week) over abstinence. Higher alcohol use was also associated with differences in corpus callosum microstructure and faster decline in lexical fluency. No association was found with cross sectional cognitive performance or longitudinal changes in semantic fluency or word recall.Conclusions Alcohol consumption, even at moderate levels, is associated with adverse brain outcomes including hippocampal atrophy. These results support the recent reduction in alcohol guidance in the UK and question the current limits recommended in the US

    Classification and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults.

    Get PDF
    White matter hyperintensities (WMH) are frequently divided into periventricular (PWMH) and deep (DWMH), and the two classes have been associated with different cognitive, microstructural, and clinical correlates. However, although this distinction is widely used in visual ratings scales, how to best anatomically define the two classes is still disputed. In fact, the methods used to define PWMH and DWMH vary significantly between studies, making results difficult to compare. The purpose of this study was twofold: first, to compare four current criteria used to define PWMH and DWMH in a cohort of healthy older adults (mean age: 69.58 ± 5.33 years) by quantifying possible differences in terms of estimated volumes; second, to explore associations between the two WMH sub-classes with cognition, tissue microstructure and cardiovascular risk factors, analysing the impact of different criteria on the specific associations. Our results suggest that the classification criterion used for the definition of PWMH and DWMH should not be considered a major obstacle for the comparison of different studies. We observed that higher PWMH load is associated with reduced cognitive function, higher mean arterial pressure and age. Higher DWMH load is associated with higher body mass index. PWMH have lower fractional anisotropy than DWMH, which also have more heterogeneous microstructure. These findings support the hypothesis that PWMH and DWMH are different entities and that their distinction can provide useful information about healthy and pathological aging processes

    Development and validation of a dementia risk score in the UK Biobank and Whitehall II cohorts

    Get PDF
    BACKGROUND: Current dementia risk scores have had limited success in consistently identifying at-risk individuals across different ages and geographical locations. OBJECTIVE: We aimed to develop and validate a novel dementia risk score for a midlife UK population, using two cohorts: the UK Biobank, and UK Whitehall II study. METHODS: We divided the UK Biobank cohort into a training (n=176 611, 80%) and test sample (n=44 151, 20%) and used the Whitehall II cohort (n=2934) for external validation. We used the Cox LASSO regression to select the strongest predictors of incident dementia from 28 candidate predictors and then developed the risk score using competing risk regression. FINDINGS: Our risk score, termed the UK Biobank Dementia Risk Score (UKBDRS), consisted of age, education, parental history of dementia, material deprivation, a history of diabetes, stroke, depression, hypertension, high cholesterol, household occupancy, and sex. The score had a strong discrimination accuracy in the UK Biobank test sample (area under the curve (AUC) 0.8, 95% CI 0.78 to 0.82) and in the Whitehall cohort (AUC 0.77, 95% CI 0.72 to 0.81). The UKBDRS also significantly outperformed three other widely used dementia risk scores originally developed in cohorts in Australia (the Australian National University Alzheimer's Disease Risk Index), Finland (the Cardiovascular Risk Factors, Ageing, and Dementia score), and the UK (Dementia Risk Score). CLINICAL IMPLICATIONS: Our risk score represents an easy-to-use tool to identify individuals at risk for dementia in the UK. Further research is required to determine the validity of this score in other populations

    Association of Midlife Cardiovascular Risk Profiles with Cerebral Perfusion at Older Ages

    Get PDF
    © 2019 AMA. All rights reserved. Importance: Poor cardiovascular health is an established risk factor for dementia, but little is known about its association with brain physiology in older adults. Objective: To examine the association of cardiovascular risk factors, measured repeatedly during a 20-year period, with cerebral perfusion at older ages. Design, Setting, and Participants: In this longitudinal cohort study, individuals were selected from the Whitehall II Imaging Substudy. Participants were included if they had no clinical diagnosis of dementia, had no gross brain structural abnormalities on magnetic resonance imaging scans, and had received pseudocontinuous arterial spin labeling magnetic resonance imaging. Cardiovascular risk was measured at 5-year intervals across 5 phases from September 1991 to October 2013. Arterial spin labeling scans were acquired between April 2014 and December 2014. Data analysis was performed from June 2016 to September 2018. Exposures: Framingham Risk Score (FRS) for cardiovascular disease, comprising age, sex, high-density lipoprotein cholesterol level, total cholesterol level, systolic blood pressure, use of antihypertensive medications, cigarette smoking, and diabetes, was assessed at 5 visits. Main Outcomes and Measures: Cerebral blood flow (CBF; in milliliters per 100 g of tissue per minute) was quantified with pseudocontinuous arterial spin labeling magnetic resonance imaging. Results: Of 116 adult participants, 99 (85.3%) were men. At the first examination, mean (SD) age was 47.1 (5.0) years; at the last examination, mean (SD) age was 67.4 (4.9) years. Mean (SD) age at MRI scan was 69.3 (5.0) years. Log-FRS increased with time (B = 0.058; 95% CI, 0.044 to 0.072;

    Cardiometabolic health across menopausal years is linked to white matter hyperintensities up to a decade later

    Get PDF
    Introduction: The menopause transition is associated with several cardiometabolic risk factors. Poor cardiometabolic health is further linked to microvascular brain lesions, which can be detected as white matter hyperintensities (WMHs) using T2-FLAIR magnetic resonance imaging (MRI) scans. Females show higher risk for WMHs post-menopause, but it remains unclear whether changes in cardiometabolic risk factors underlie menopause-related increase in brain pathology. Methods: In this study, we assessed whether cross-sectional measures of cardiometabolic health, including body mass index (BMI) and waist-to-hip ratio (WHR), blood lipids, blood pressure, and long-term blood glucose (HbA1c), as well as longitudinal changes in BMI and WHR, differed according to menopausal status at baseline in 9,882 UK Biobank females (age range 40–70 years, n premenopausal = 3,529, n postmenopausal = 6,353). Furthermore, we examined whether these cardiometabolic factors were associated with WMH outcomes at the follow-up assessment, on average 8.78 years after baseline. Results: Postmenopausal females showed higher levels of baseline blood lipids (HDL (Formula presented.) = 0.14, p &lt; 0.001, LDL (Formula presented.) = 0.20, p &lt; 0.001, triglycerides (Formula presented.) = 0.12, p &lt; 0.001) and HbA1c ((Formula presented.) = 0.24, p &lt; 0.001) compared to premenopausal women, beyond the effects of age. Over time, BMI increased more in the premenopausal compared to the postmenopausal group ((Formula presented.) = −0.08, p &lt; 0.001), while WHR increased to a similar extent in both groups ((Formula presented.) = −0.03, p = 0.102). The change in WHR was however driven by increased waist circumference only in the premenopausal group. While the group level changes in BMI and WHR were in general small, these findings point to distinct anthropometric changes in pre- and postmenopausal females over time. Higher baseline measures of BMI, WHR, triglycerides, blood pressure, and HbA1c, as well as longitudinal increases in BMI and WHR, were associated with larger WMH volumes ((Formula presented.) range = 0.03–0.13, p ≤ 0.002). HDL showed a significant inverse relationship with WMH volume ((Formula presented.) = −0.27, p &lt; 0.001). Discussion: Our findings emphasise the importance of monitoring cardiometabolic risk factors in females from midlife through the menopause transition and into the postmenopausal phase, to ensure improved cerebrovascular outcomes in later years.</p

    Predicting cognitive resilience from midlife lifestyle and multi-modal MRI: A 30-year prospective cohort study

    Get PDF
    Background There is significant heterogeneity in the clinical expression of structural brain abnormalities, including Alzheimer’s disease biomarkers. Some individuals preserve their memory despite the presence of risk factors or pathological brain changes, indicating resilience. We aimed to test whether resilient individuals could be distinguished from those who develop cognitive impairment, using sociodemographic variables and neuroimaging. Methods We included 550 older adults participating in the Whitehall II study with longitudinal data, cognitive test results, and multi-modal MRI. Hippocampal atrophy was defined as Scheltens Scores >0. Resilient individuals (n = 184) were defined by high cognitive performance despite hippocampal atrophy (HA). Non-resilient participants (n = 133) were defined by low cognitive performance (≥1.5 standard deviations (S.D.) below the group mean) in the presence of HA. Dynamic and static exposures were evaluated for their ability to predict later resilience status using multivariable logistic regression. In a brain-wide analysis we tested for group differences in the integrity of white matter (structural connectivity) and resting-state networks (functional connectivity). Findings Younger age (OR: 0.87, 95% CI: 0.83 to 0.92, p<0.001), higher premorbid FSIQ (OR: 1.06, 95% CI: 1.03 to 1.10, p<0.0001) and social class (OR 1 vs. 3: 4.99, 95% CI: 1.30 to 19.16, p = 0.02, OR 2 vs. 3: 8.43, 95% CI: 1.80 to 39.45, p = 0.007) were independently associated with resilience. Resilient individuals could be differentiated from non-resilient participants by higher fractional anisotropy (FA), and less association between anterior and posterior resting state networks. Higher FA had a significantly more positive effect on cognitive performance in participants with HA, compared to those without. Conclusions Resilient individuals could be distinguished from those who developed impairments on the basis of sociodemographic characteristics, brain structural and functional connectivity, but not midlife lifestyles. There was a synergistic deleterious effect of hippocampal atrophy and poor white matter integrity on cognitive performance. Exploiting and supporting neural correlates of resilience could offer a fresh approach to postpone or avoid the appearance of clinical symptoms

    Lifetime hypertension as a predictor of brain structure in older adults: cohort study with a 28-year follow-up.

    Get PDF
    BACKGROUND: Hypertension is associated with an increased risk of dementia and depression with uncertain longitudinal associations with brain structure. AIMS: To examine lifetime blood pressure as a predictor of brain structure in old age. METHOD: A total of 190 participants (mean age 69.3 years) from the Whitehall II study were screened for hypertension six times (1985-2013). In 2012-2013, participants had a 3T-magnetic resonance imaging (MRI) brain scan. Data from the MRI were analysed using automated and visual measures of global atrophy, hippocampal atrophy and white matter hyperintensities. RESULTS: Longitudinally, higher mean arterial pressure predicted increased automated white matter hyperintensities (P<0.002). Cross-sectionally, hypertensive participants had increased automated white matter hyperintensities and visually rated deep white matter hyperintensities. There was no significant association with global or hippocampal atrophy. CONCLUSIONS: Long-term exposure to high blood pressure predicts hyperintensities, particularly in deep white matter. The greatest changes are seen in those with severe forms of hypertension, suggesting a dose-response pattern
    corecore