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Abstract

IMPORTANCE Poor cardiovascular health is an established risk factor for dementia, but little is
known about its association with brain physiology in older adults.

OBJECTIVE To examine the association of cardiovascular risk factors, measured repeatedly during a
20-year period, with cerebral perfusion at older ages.

DESIGN, SETTING, AND PARTICIPANTS In this longitudinal cohort study, individuals were selected
from the Whitehall II Imaging Substudy. Participants were included if they had no clinical diagnosis
of dementia, had no gross brain structural abnormalities on magnetic resonance imaging scans, and
had received pseudocontinuous arterial spin labeling magnetic resonance imaging. Cardiovascular
risk was measured at 5-year intervals across 5 phases from September 1991 to October 2013. Arterial
spin labeling scans were acquired between April 2014 and December 2014. Data analysis was
performed from June 2016 to September 2018.

EXPOSURES Framingham Risk Score (FRS) for cardiovascular disease, comprising age, sex, high-
density lipoprotein cholesterol level, total cholesterol level, systolic blood pressure, use of
antihypertensive medications, cigarette smoking, and diabetes, was assessed at 5 visits.

MAIN OUTCOMES AND MEASURES Cerebral blood flow (CBF; in milliliters per 100 g of tissue per
minute) was quantified with pseudocontinuous arterial spin labeling magnetic resonance imaging.

RESULTS Of 116 adult participants, 99 (85.3%) were men. At the first examination, mean (SD) age
was 47.1 (5.0) years; at the last examination, mean (SD) age was 67.4 (4.9) years. Mean (SD) age at
MRI scan was 69.3 (5.0) years. Log-FRS increased with time (B = 0.058; 95% CI, 0.044 to 0.072;
P < .001). Higher cumulative FRS over the 20-year period (measured as the integral of the rate of
change of log-FRS) was associated with lower gray matter CBF (B = −0.513; 95% CI −0.802 to
−0.224; P < .001) after adjustment for age, sex, education, socioeconomic status, cognitive status,
arterial transit time, use of statins, and weekly alcohol consumption. Voxelwise analyses revealed
that this association was significant in 39.6% of gray matter regions, including the posterior
cingulate, precuneus, lateral parietal cortex, occipital cortex, hippocampi, and parahippocampal
gyrus. The strength of the association of higher log-FRS with lower CBF decreased progressively from
the first examination (R2 = 0.253; B = −10.816; 99% CI −18.375 to −3.257; P < .001) to the last
(R2 = 0.188; B = −7.139; 99% CI −14.861 to 0.582; P = .02), such that the most recent FRS
measurement at mean (SD) age 67.4 (4.9) years was not significantly associated with CBF with a
Bonferroni-corrected P < .01 .
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Key Points
Question Is midlife cardiovascular risk

associated with cerebral blood flow in

older age, and does this association vary

with age?

Findings In this longitudinal cohort

study of 116 older adults without

dementia, higher cardiovascular risk

scores during a 20-year period were

significantly associated with lower

cerebral blood flow to the medial
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span such that cardiovascular risk in
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significantly associated with cerebral

hypoperfusion in older age.

Meaning Because cerebral

hypoperfusion is an early mechanism in
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dementia, these findings may inform the

development of dementia prevention

strategies aimed at managing
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Abstract (continued)

CONCLUSIONS AND RELEVANCE Cardiovascular risk in midlife was significantly associated with
lower gray matter perfusion at older ages, but this association was not significant for cardiovascular
risk in later life. This finding could inform the timing of cardiovascular interventions so as to be
optimally effective.

JAMA Network Open. 2019;2(6):e195776. doi:10.1001/jamanetworkopen.2019.5776

Introduction

Dementia and cardiovascular diseases (CVDs) share many risk factors, including hypertension,
smoking, type 2 diabetes, hypercholesterolemia, and obesity.1 These cardiovascular risk factors are
potentially modifiable, and their timely management could help prevent nearly one-third of
dementia cases worldwide.2,3 In epidemiological studies, cardiovascular risk in midlife rather than old
age has been associated with increased dementia risk. For example, obesity in midlife (ages 40-60
years) is associated with an elevated risk of dementia,4,5 but owing to loss of weight during the
preclinical stage of dementia, short-term follow-up studies of people older than 70 years have
reported reduced dementia incidence in individuals with obesity.6-8 The association of dementia
prevalence with hypertension may also be age dependent, with evidence of positive associations
with midlife hypertension but no association or inverse associations with later-life hypertension.9,10

The brain physiology underlying these associations remains unclear, and in this study, we
examined whether cerebral blood flow (CBF) may play a role. Reduced CBF is an important biological
mechanism in dementia, and hypoperfusion in patients with mild cognitive impairment, vascular
dementia, and Alzheimer disease has been well documented.11-16 A 2016 Alzheimer Disease
Neuroimaging Initiative study17 found that of several disease biomarkers, such as brain atrophy,
metabolism, CBF, functional connectivity, β-amyloid deposition, plasma and cerebrospinal fluid
markers, and cognition, the earliest pathological event in Alzheimer progression was reduced CBF.
Cerebrovascular dysregulation may therefore precede and even accelerate neurodegeneration, and
CBF in particular has emerged as a promising imaging biomarker for preventive interventions.13,18-20

We examined whether cardiovascular risk measured repeatedly during a 20-year period in
midlife was associated with CBF in later life, with the aim of identifying the age at which an
association was strongest. We operationalized vascular risk as the Framingham Risk Score (FRS) for
CVD, a widely cited score that combines multiple risk factors to estimate 10-year risk of general
CVD.21 The FRS has been thoroughly validated for assessing cardiac health in primary care and is also
a reliable predictor of cognitive decline,22 cerebrovascular lesions, such as white matter
hyperintensities,23 and progression to dementia.24 We quantified CBF noninvasively with magnetic
resonance imaging (MRI)–based pseudocontinuous arterial spin labeling (pCASL)25 and
hypothesized that higher FRS would be associated with reduced CBF. We did not make any prior
assumptions about affected brain areas and instead performed voxelwise analyses of the
whole brain.

Methods

Design, Setting, and Participants
Data were drawn from the Whitehall II Imaging Substudy, a cohort of 800 UK civil servants aged 60
to 85 years who received multimodal brain MRI scans at the Wellcome Centre for Integrative
Neuroimaging, University of Oxford, Oxford, United Kingdom, between April 2012 and December
2016. From April 2014 to December 2014, pCASL MRIs were conducted in a subset of this cohort (145
participants), and only participants who received a pCASL scan were included in this study. Whitehall
II Imaging Substudy participants were randomly selected from the parent Whitehall II Study, an
ongoing prospective cohort study established in 1985 at University College London, London, United
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Kingdom. The parent cohort included 10 308 volunteers aged 35 to 55 years at the time who have
been observed for more than 30 years in 12 phases. Cardiovascular risk was measured at 5 phases:
phase 3 (1991-1994), phase 5 (1997-1999), phase 7 (2002-2004), phase 9 (2007-2009), and phase
11 (2011-2013). Participants have shown a mean response rate of 77.14% from phase 1 to phase 11.
Detailed protocols for the Whitehall II Study and Imaging Substudy have been described
previously.26,27

Of the 145 Whitehall II Imaging Substudy participants with pCASL scans, we excluded those with
gross structural MRI abnormalities (eg, large strokes, tumors, and cysts; 7 participants [4.8%]),
missing FRS data at phases 3 and 11 (19 participants [13.1%]), and missing FRS data from 3 or more
phases (3 participants [2.1%]). Accordingly, data from 116 participants (80.0%) were analyzed in this
study, and none had a clinical diagnosis of dementia at the time of the MRI scan. All participants
provided written informed consent, and the study was approved by the University of Oxford Medical
Sciences Interdivisional Research Ethics Committee as part of the larger study. This report follows
the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline.28

Vascular Risk
The primary exposure variable, FRS, was measured at 5 Whitehall II Study phases using information
on age, sex, high-density lipoprotein cholesterol level, total cholesterol level, systolic blood pressure,
use of antihypertensive medication, cigarette smoking, and type 2 diabetes (eAppendix in the
Supplement).29,30 At each phase, FRS was only computed for participants who did not have
prevalent CVD at that phase. For example, if a participant had prevalent CVD at phases 5 and 7, FRS
was only computed for phases 3, 9, and 11. Cardiovascular disease was defined as having myocardial
infarction, angina, or stroke diagnosed with clinical examination, electrocardiography, and medical
records.30 Raw scores were converted to 10-year risk or predicted probability of incident CVD
expressed as a percentage.21 Risk of CVD is typically categorized as low if FRS is less than or equal to
10%, moderate if FRS is between 10% and 20%, and high if FRS is greater than or equal to 20%. In
the Whitehall II Substudy cohort, FRS reliably predicted CVD31 and cognitive decline.22,29

Cerebral Blood Flow
The primary outcome was CBF, quantified as the rate of delivery of arterial blood to brain tissue
(milliliters of blood per 100 g of tissue per minute) using pCASL MRI.25 Magnetic resonance imaging
scans were acquired on a 3-T Magnetom Verio Scanner with a 32-channel head coil (Siemens). A
multiple postlabeling delay pCASL scan was used to quantify absolute resting CBF and arterial transit
time (repetition time, 4240 milliseconds; echo time, 13 milliseconds; voxel size, 3.4 × 3.4 × 4.5 mm;
flip angle, 90°; slice thickness, 4.5 mm; labeling duration, 1400 milliseconds; postlabel delays, 0.25,
0.50, 0.75, 1.0, 1.25, 1.5, and 1.75 seconds).32 Two calibration scans (repetition time, 10 000
milliseconds; echo time, 13 milliseconds) were acquired to calibrate the pCASL perfusion-weighted
signal via the equilibrium magnetization of blood. T1-weighted multiecho magnetization-prepared
rapid gradient echo structural MRI scans (voxel size, 1 mm3; repetition time, 2530 milliseconds; echo
times, 1.79, 3.65, 5.51, and 7.37 milliseconds) were used for registration and partial-volume correction
of the perfusion data. Images were processed using FMRIB Software Library tools version 6.0
(FSL).33 Absolute resting perfusion maps were generated using the Bayesian Inference for Arterial
Spin Labeling (BASIL) MRI tool in FSL, which uses a variational Bayes approach to perform a nonlinear
fit of the general kinetic model to the pCASL data for all voxels in the brain.34 Pseudocontinuous
arterial spin labeling scans were preprocessed, partial-volume corrected, and registered to MNI 152
standard space (Montreal Neurological Institute) to obtain gray matter (GM) CBF maps (eAppendix in
the Supplement).32,35-37
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Statistical Analysis
Linear Mixed-Effects Model
We examined the association of CBF with (1) cumulative FRS from phases 3 to 11, (2) longitudinal
change in FRS, and (3) FRS at each phase. Phase 1 (1985-1988) of the Whitehall II Study corresponded
to time 0, and FRS was tracked for approximately 20 years from phase 3 (1991-1994) to phase 11
(2011-2013). Longitudinal change in FRS was calculated using linear mixed-effects models with
maximum likelihood estimation in R version 1.1.463 (The R Foundation) using the nlme package. The
model implemented a continuous autoregressive moving-average correlation structure to consider
correlations between repeated measures on the same individual. Both the intercepts and slope
(time) were fitted as random effects. Adding a quadratic term for time as a fixed effect significantly
improved the model fit (χ 2

1 = 4.2; deviance, 394; P = .04). Framingham Risk Scores were
logarithmically transformed owing to the positively skewed distribution of the standardized
residuals. Cumulative FRS during the 20-year period was estimated as the integral of the rate of
change of log-FRS (area under the y-curve) calculated with trapezoidal integration. For all
participants, (1) cumulative 20-year FRS, (2) intercepts (ie, predicted FRS at phase 1), and (3) slopes
(ie, rate of change of FRS from phases 3-11) of the mixed-effects model were extracted for
subsequent analyses.

MRI Analyses
Voxelwise general linear modeling was performed in FSL. Participants’ standard-space GM perfusion
maps were concatenated into a 4-dimensional file. This was submitted to FSL-Randomize to perform
a permutation-based nonparametric test with 5000 permutations. The threshold-free cluster
enhancement option was used, and a standard MNI 152 GM mask (threshold, 35) was supplied in
FSL-Randomize. In the first voxelwise analysis conducted on 116 participants, cumulative FRS was the
independent variable in a covariate-adjusted general linear model, and results were reported at a
familywise error–corrected, 1-sided P < .05. In the second voxelwise analysis, FRS scores from the 5
phases were entered in 5 separate general linear models, and results were reported at familywise
error–corrected, Bonferroni-corrected, 1-sided P < .01. The second voxelwise analysis was conducted
on 98 participants who had complete FRS data across all 5 phases. As voxelwise statistics are
nonparametric, FRS scores were not log-transformed for these analyses.

Region of Interest Analyses
Mean global GM CBF was extracted from native-space CBF maps using the MNI 152 GM mask and
regressed against (1) cumulative FRS, (2) FRS slopes and intercepts, and (3) log-FRS at each phase.
Differences in the contribution of phase 3 vs phase 11 log-FRS to GM CBF were compared using
hierarchical regression models. Mean CBF to the frontal, temporal, parietal, and occipital lobes was
extracted from native-space perfusion maps using region of interest masks derived from the MNI
Structural Atlas (threshold, 40). Separate linear regressions of phase 3 log FRS vs CBF to each lobe
were performed, and significance was accepted at a Bonferroni-corrected, 1-sided P < .0125 to
correct for 4 regressions (1 for each region of interest).

Covariates
Covariates reported to influence CBF and cardiovascular risk were included in all models. These
included age, sex, education, socioeconomic status, cognitive status, mean arterial transit time for
GM, statin medication, and alcohol consumption. At the MRI phase, education was calculated as the
total years of full-time and part-time education; cognitive status was assessed using the Montreal
Cognitive Assessment38; and statin use was classified according to British National Formulary Class
2.12. Alcohol intake was assessed by self-report questionnaires administered at phase 9, phase 11, and
the MRI phase. Mean alcohol consumption was calculated as total units per week of alcohol
consumed averaged across the 3 phases. Socioeconomic status was defined based on the highest
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civil service employment grade achieved at phase 3 (highest, grade 1; lowest, grade 4). Secondary
associations of covariates with CBF have been reported but not further interpreted.

Additional Analyses
As the equation used to derive FRS includes age as a risk factor, we ran further analyses to exclude a
biased contribution of age to our results. We reran all models with an additional covariate for
quadratic age, and this did not change the results (data not shown). However, because quadratic age
introduced high multicollinearity in the models and was not significantly associated with CBF
(B = −0.0024; 95% CI, −0.0056 to 0.0009; P = .13), the results presented do not include quadratic
age as a covariate. We also computed a modified FRS without the age component in the equation,
and the results remained consistent (eTable 1 in the Supplement). Further, apolipoprotein E genotype
was available for a subset of participants (84 [72.4%]), and correcting for apolipoprotein E in a
separate subanalysis did not alter the results (data not shown).

Results

Participant Characteristics
The demographic characteristics and FRS profiles of the 116 included participants were not
significantly different from the complete Whitehall II Imaging Substudy cohort (eTable 2 in the
Supplement). Participant characteristics at the MRI phase are shown in Table 1; 99 (85.3%) were
male. At the first examination, mean (SD) age was 47.1 (5.0) years; at the last examination, mean (SD)
age was 67.4 (4.9) years. Mean (SD) age at MRI scan was 69.3 (5.0) years. Participants had a mean
(SD) duration of education of 15.8 (3.4) years. At phase 3, 86 participants (74.1%) had a low risk of
developing CVD in 10 years, 24 (20.7%) had a moderate risk, and 6 (5.2%) had a high risk (Table 2).21

Log-transformed FRS increased significantly with time (B, 0.058; 95% CI, 0.044 to 0.072;
t437 = 8.1; P < .001).

Association of Cumulative FRS With CBF
Cumulative FRS during 20 years (ie, integrals of the change in log-FRS) significantly explained 11.1%
of the variance in GM CBF extracted from perfusion maps (R2 = 0.111; B = −0.346; 95% CI, −0.528 to
−0.165; P < .001). Adding covariates to the model explained an additional 10.4% of the variance in
GM CBF (R2 = 0.215; P for the model = .002), and cumulative FRS remained significantly associated
with CBF (B = −0.513; 95% CI, −0.802 to −0.224: P < .001). Voxelwise regression revealed that
higher cumulative FRS was significantly associated with lower CBF to 39.6% of GM areas, including
the posterior cingulate, precuneus, lateral parietal cortex, occipital cortex, bilateral caudate,
thalamus, hippocampus, parahippocampal gyrus, anterior cingulate, middle frontal gyrus, and frontal
pole (Figure 1).

We examined the association of CBF with the intercepts and slopes of FRS trajectories. The
intercepts alone significantly explained 11.5% of the variance in GM CBF (R2 = 0.115; B = −6.488; 95%
CI, −9.824 to −3.152; P < .001), and adding FRS slopes to the model did not significantly change
model fit (F1,114 = 0.01; P = .94). In a covariate-adjusted model (R2 = 0.220; P for the model = .002),
FRS intercepts but not slopes were significantly associated with CBF (FRS intercepts: B = −10.497;
95% CI, −17.424 to −3.569; P = .003; FRS slopes: B = −57.785; 95% CI, −478.573 to
363.004; P = .79).

Association of FRS at Each Phase With CBF
Voxelwise analysis in 98 participants with complete FRS measurements from all phases revealed that
the strength of the association of FRS with CBF varied across phases. In covariate-adjusted models,
FRS at phase 3 was significantly associated with lower CBF to 16.9% of GM, including the posterior
cingulate, precuneus, lateral parietal cortex, middle frontal cortex, and occipital cortex at the
familywise error–corrected and Bonferroni-corrected P < .01 (Figure 1). However, this association
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became progressively less widespread over time, with significant associations at phases 5, 7, and 9
localized to 8.9%, 7.2%, and 5.5%, respectively, of GM. The FRS measurement at phase 11 was not
significantly associated with CBF. To derive effect sizes, mean CBF was extracted from GM perfusion
maps and entered into a linear regression against log-FRS at each phase. Consistent with the
voxelwise results, the strength of the association of FRS with CBF decreased from the first
examination at phase 3 (R2 = 0.253; B = −10.816; 99% CI, −18.375 to −3.257; P < .001) to phase 5
(R2 = 0.218; B = −8.288; 99% CI, −15.353 to −1.223; P = .003) and phase 7 (R2 = 0.220; B = −8.511;
99% CI, −15.660 to −1.361; P = .002) as well as the later examinations at phase 9 (R2 = 0.169;
B = −5.743; 99% CI, −13.463 to 1.977; P = .05) and phase 11 (R2 = 0.188; B = −7.139; 99% CI, −14.861
to 0.582; P = .02). Adding phase 11 log-FRS to the phase 3 model did not significantly change model
fit (F1,87 = 0.39; P = .53); however, adding phase 3 log-FRS to the phase 11 model significantly
improved model fit (F1,87 = 8.08; P = .006).

Cerebral blood flow to the frontal, temporal, parietal, and occipital lobes was extracted using
region of interest masks. Consistent with the voxelwise results, phase 3 log-FRS was associated with

Table 1. Participant Characteristics at the Magnetic Resonance Imaging Phase in 2014

Characteristic Mean (SD) [Range]a

Total participants, No. 116

Demographic characteristics

Age, y 69.3 (4.96) [61.94-80.94]

Sex, No. (%)

Men 99 (85.3)

Women 17 (14.7)

Socioeconomic status, No. (%)

1 13 (11.2)

2 96 (82.8)

3 6 (5.2)

4 1 (0.9)

Education, full-time and half-time, y 15.83 (3.39) [7.50-28.50]

MOCA score, median (IQR) [range] 27 (25-29) [19-30]

Cardiovascular health

Blood pressure, mm Hg

Systolic 140.97 (17.02) [106.00-210.00]

Diastolic 75.83 (10.18) [54.00-102.00]

Antihypertensive medication use, No. (%)b 37 (31.9)

Statin use, No. (%) 50 (43.1)

Cigarette smokers, No. (%) 5 (4.3)

Type 2 diabetes, No. (%) 8 (6.9)

Alcohol consumption during 3 phases, median (IQR) [range], units/wk 10.13 (4.66-15.92) [0-55.64]

BMI 25.72 (3.79) [14.29-35.77]

ApoE E3/E4 or E4/E4 carriers, No./total No. (%)c 21/84 (25.0)

Brain volumes, % of TBV

TBV, mL 1455.95 (128.51) [1172.27-1927.78]

Gray matter volume 36.99 (2.08) [31.05-42.95]

White matter volume 37.22 (1.61) [33.30-43.88]

Cerebrospinal fluid volume 25.79 (2.66) [20.91-32.53]

Cerebral blood flow, mL/100 g/min

Total gray matter 56.05 (12.21) [31.58-89.44]

Frontal lobe 55.26 (13.70) [26.84-92.20]

Parietal lobe 64.49 (16.28) [27.95-113.37]

Temporal lobe 53.90 (10.98) [27.70-80.07]

Occipital lobe 56.61 (18.23) [19.41-114.00]

Abbreviations: ApoE, apolipoprotein E; BMI, body
mass index (calculated as weight in kilograms divided
by height in meters squared); IQR, interquartile range;
MOCA, Montreal Cognitive Assessment; TBV, total
brain volume.
a Values are displayed as mean (SD) for normally

distributed data, and median (IQR) for data that are
not normally distributed. Ranges represent the
minimum and maximum value for the data.

b Antihypertensive medications included diuretics,
β-blockers, angiotensin-converting enzyme
inhibitors, and calcium channel blockers.

c APOE genotype was only available for 84 of 116
participants.
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parietal, occipital, and temporal lobe CBF at Bonferroni-corrected P < .0125. We also noted
secondary associations of covariates with CBF at an uncorrected P < .05. Montreal Cognitive
Assessment scores were positively associated with CBF to the temporal and parietal lobes, whereas
male sex was negatively associated with CBF to the occipital lobe and alcohol consumption was
negatively associated with CBF to the temporal lobe (Table 3; Figure 2).

Discussion

The 2-hit vascular hypothesis20 and heart-brain19 models of dementia propose that cerebral
hypoperfusion may be a key biological pathway of the association of cardiovascular risk with
dementia. In support of these models, we observed that cumulative cardiovascular risk during a
20-year period in midlife was significantly associated with lower CBF in later life. This association was
fairly widespread, covering approximately 39.6% of GM, and it was most prominent in the posterior
and parietal cortices. Our longitudinal analyses revealed an age-dependent pattern so that midlife
vascular risk profiles rather than later-life vascular risk profiles showed the strongest association with
CBF in older age. The earliest risk measurements (phase 3) made a unique and significant
contribution to CBF over and above that of the latest risk scores (phase 11) but not vice versa. This
emphasizes the importance of an early start for dementia prevention by cardiovascular
interventions.

Table 2. Participant Characteristics for 5 Phases of Whitehall II Study

Characteristic Phase 3, 1991-1994 Phase 5, 1997-1999 Phase 7, 2002-2004 Phase 9, 2007-2009 Phase 11, 2011-2013
Total participants 116 106 109 108 116

FRS %, median (IQR) [range]a 6.92 (4.65-10.22)
[0.88-24.68]

8.99 (5.76-14.84)
[1.17-32.33]

12.80 (9.01-18.18)
[1.43-41.91]

15.55 (9.63-21.21)
[3.06-58.00]

16.39 (11.44-24.59)
[2.85-55.08]

FRS, No. (%)b

Low 86 (74.1) 58 (54.7) 36 (33.3) 30 (27.8) 16 (13.8)

Moderate 24 (20.7) 39 (36.8) 52 (47.7) 48 (44.4) 58 (50.0)

High 6 (5.2) 9 (8.5) 21 (19.3) 30 (27.8) 42 (36.2)

Age, mean (SD) [range], y 47.1 (5.0) [40.1-58.9] 52.9 (4.9) [45.7-64.8] 58.5 (5.0) [51.4-70.1] 63.5 (5.0) [56.4-75.3] 67.4 (4.9) [60.5-79.5]

Abbreviations: FRS, Framingham Risk Score; IQR, interquartile range.
a Framingham Risk Score is expressed as a percentage of 10-year risk of

cardiovascular disease.

b Low risk defined as FRS less than or equal to 10%; moderate risk, FRS between 10%
and 20%; and high risk, FRS greater than or equal to 20%.

Figure 1. Voxelwise Association of Framingham Risk Scores With Cerebral Blood Flow

R L
P < .05 P < .0001

Phase 3 Phase 5 Phase 7 Phase 9 Phase 11

R L

P < .01 P < .0001

Top, Red-yellow clusters denote regions showing a
significant negative association of cumulative
Framingham Risk Score with gray matter cerebral
blood flow during 20 years (thresholded at familywise
error–corrected P < .05). From left to right, horizontal
slices are displayed at z = −24, z = −12, z = 0, z = 12,
z = 24, and z = 36 in coordinate space (millimeters).
Bottom, Blue clusters denote regions showing a
significant negative association of Framingham Risk
Score with gray matter cerebral blood flow at 5 study
phases (thresholded at familywise error–corrected and
Bonferroni-corrected P < .01). The association of
Framingham Risk Score with cerebral blood flow
became progressively less widespread from phase 3 to
phase 9 and was not statistically significant for phase
11 risk scores. L indicates left; R, right.
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Obesity, hypercholesterolemia, hypertension, and dysfunctional insulin signaling in diabetes are
accompanied by increased intima-media thickness, progressive hardening of large arteries, and
excess pulsatility, all of which can ultimately affect the brain’s blood supply.18,39-44 The prefrontal,
posterior cingulate, and occipital cortices are particularly susceptible to vascular damage,45 and this
is consistent with our observations of lower CBF in these areas.

Kaffashian et al29 have previously reported that higher midlife FRS predicts faster 10-year
cognitive decline in more than 5000 Whitehall II Study participants. Our study was conducted in a

Table 3. Association of Phase 3 Framingham Risk Scores (FRS) With Cerebral Blood Flow

Model

Lobe CBF

Frontal Temporal Parietal Occipital

R2, %

P Value
for
Model B (SE)

P Value
for FRS R2, %

P Value
for
Model B (SE)

P Value
for FRS R2, %

P Value
for
Model B (SE)

P Value
for FRS R2, %

P Value
for
Model B (SE)

P Value
for FRS

Model 1a 5.6 .01 −5.118
(1.968)

.01b 8.5 .001 −5.063
(1.552)

.001c 9.8 .001 −8.060
(2.285)

.001c 17.5 <.001 −12.034
(2.448)

<.001c

Model 2d 12.0 .12 −7.924
(3.188)

.02b 21.6 .002c −7.198
(2.411)

.004c 19.1 .006 −11.633
(3.634)

.002c 26.7 <.001 −16.846
(3.872)

<.001c

Abbreviation: CBF, cerebral blood flow.
a Model 1 examined the association of log–Framingham Risk Scores at phase 3 with CBF

to the frontal, temporal, parietal, and occipital lobes.
b Associations significant at uncorrected P < .05.

c Associations statistically significant at Bonferroni-corrected P < .0125.
d Model 2 included additional covariates: age, sex, education, cognitive status,

socioeconomic status, arterial transit time, statin medication use, and units per week
of alcohol consumed.

Figure 2. Forest Plot Summarizing Standardized Coefficients for the Regression of Phase 3 Log–Framingham Risk Scores (FRS)
With Cerebral Blood Flow (CBF) (N = 116)
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–0.38

Negative
Association
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Association

Independent
Variable Mean (95% CI)

Frontal lobe CBFA

Intercept 0.000 (–0.178 to 0.178)
Age 0.130 (–0.103 to 0.363)
Sex –0.156 (–0.407 to 0.095)
Education 0.010 (–0.194 to 0.214)
MOCA 0.189 (–0.013 to 0.391)
ATT –0.020 (–0.217 to 0.177)
Statins 0.138 (–0.064 to 0.340)
Alcohol –0.113 (–0.300 to 0.074)
SES 0.035 (–0.167 to 0.237)
Log-FRS at 

Phase 3
0.366 (–0.654 to –0.078)

–1.0 0.5 1.00

Mean (95% CI)
–0.5

Negative
Association

Positive
Association

Independent
Variable Mean (95% CI)

Parietal lobe CBFC

Intercept 0.000 (–0.171 to 0.171)
Age 0.107 (–0.117 to 0.331)
Sex –0.231 (–0.471 to 0.009)
Education –0.014 (–0.211 to 0.183)
MOCA 0.197 (0.004 to 0.390)
ATT –0.034 (–0.221 to 0.153)
Statins 0.128 (–0.067 to 0.323)
Alcohol –0.177 (–0.357 to 0.003)
SES 0.045 (–0.150 to 0.240)
Log-FRS at 

Phase 3
–0.453 (–0.730 to –0.176)

–0.75 0.380

Mean (95% CI)

–0.38

Negative
Association

Positive
Association

Independent 
Variable Mean (95% CI)

Temporal lobe CBFB

Intercept –0.000 (–0.169 to 0.169)
Age 0.068 (–0.152 to 0.288)
Sex –0.171 (–0.408 to 0.066)
Education –0.021 (–0.214 to 0.172)
MOCA 0.195 (0.006 to 0.384)
ATT 0.156 (–0.028 to 0.340)
Statins 0.167 (–0.022 to 0.356)
Alcohol –0.212 (–0.390 to –0.034)
SES 0.098 (–0.091 to 0.287)
Log-FRS at 

Phase 3
–0.415 (–0.688 to –0.142)

–1.0 0.50

Mean (95% CI)
–0.5

Negative
Association

Positive
Association

Independent 
Variable Mean (95% CI)

Occipital lobe CBFD

Intercept 0.000 (–0.162 to 0.162)
Age 0.146 (–0.067 to 0.359)
Sex –0.243 (–0.472 to –0.014)
Education 0.046 (–0.140 to 0.232)
MOCA 0.125 (–0.059 to 0.309)
ATT –0.139 (–0.317 to 0.039)
Statins 0.133 (–0.051 to 0.317)
Alcohol –0.171 (–0.344 to 0.002)
SES 0.124 (–0.060 to 0.308)
Log-FRS at 

Phase 3
–0.585 (–0.849 to –0.321)

Mean values denote the standardized regression coefficients for each independent variable. Log-FRS at phase 3 is significantly associated with CBF to the temporal, parietal, and
occipital lobes at a Bonferroni-corrected P < .0125. ATT indicates arterial transit time; MOCA, Montreal Cognitive Assessment score; and SES, socioeconomic status.
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randomly selected subsample of 116 adults from this cohort and suggests that cerebral
hypoperfusion may contribute to this association. The role of reduced CBF in the pathogenesis of
vascular and Alzheimer dementia has been extensively reviewed.12,18,20,46 Chronic hypoperfusion
can damage the blood-brain barrier. This eventually reduces the clearance of toxic β-amyloid and
increases the leakage of inflammatory markers into the central nervous system, causing downstream
metabolic and inflammatory dysfunction.12,42,46 Severe hypoperfusion accelerates the accumulation
of white matter hyperintensities, reactive oxygen species, and amyloid and hyperphosphorylated
tau deposits.47-49 Reduced CBF is also associated with the severity of cognitive decline in mild
cognitive impairment, vascular dementia, and Alzheimer disease.14,50,51 In these disorders, CBF is
typically reduced in the posterior cingulate, precuneus, lateral parietal cortex, and medial temporal
cortex in a distribution similar to the association of FRS with CBF observed here.12,51 Although
reduced CBF is an early marker of cerebrovascular and neurodegenerative disease, CBF also gradually
decreases during healthy aging.52,53 Importantly, FRS was associated with CBF over and above
potentially confounding effects of age, GM volume, and cognitive performance.

We also observed that better cognitive performance, lower alcohol consumption, and female
sex were associated with higher CBF. Because these were not our primary predictor variables and the
associations were observed post hoc in a multivariable regression, they will not be further
interpreted. However, this supports the extensive literature linking hypoperfusion with cognitive
impairment and recent evidence linking alcohol consumption with hippocampal atrophy,54 so it
warrants independent examination.

The differential association of FRS with CBF across phases adds to the mounting
epidemiological evidence placing CVD as a midlife rather than late-life risk factor for dementia. Some
methodological considerations may contribute to this age-dependent association. First, the way in
which cardiovascular risk was measured may play a role. While FRS is a validated predictor of CVDs in
adults aged 35 to 75 years, it may underestimate cardiovascular risk in adults older than 85 years.21

In our study, the mean (SD) age at the latest FRS measurement was 67.4 (4.9) years, with the oldest
participant being 79.5 years old, so it is unlikely that this could have driven our results. Furthermore,
attempts to adapt FRS for elderly populations have shown that neither refitting equations nor
incorporating other measurements into the FRS equation improve its discriminative accuracy and
that the traditionally used risk factors remained the best predictors of cardiovascular events even in
the oldest participants.55 Second, as the FRS includes age, its age-dependent associations with CBF
may be excessively driven by aging itself rather than by the other vascular risk factors. However,
when we reformulated the risk score without age, our findings remained consistent. It is therefore
more plausible that the age-dependent associations with CBF are associated with changes in the
modifiable vascular risk factors as opposed to the nonmodifiable age component of the score. Third,
as this study has a retrospective design where participants were sampled from the later phases,
selection bias may have contributed to the attenuated association of FRS with CBF across phases.
Participants in the Whitehall II Imaging Substudy were randomly selected from the phase 11 cohort;
however, because the former required travel to Oxford, United Kingdom, and MRI compatibility, it is
possible that self-exclusion may have resulted in a healthier final sample. While this may have
underestimated the effect of time and particularly the association of FRS slopes with CBF, this is
unlikely to be a major source of bias.

An alternative explanation is that, given the multifactorial cascade of metabolic, inflammatory,
and neurodegenerative processes in aging, the unique contribution of cardiovascular risk on brain
outcomes may be attenuated or even altered with age. Knopman et al56 found that diabetes,
hypertension, obesity, and hypercholesterolemia in midlife were associated with developing mild
cognitive impairment and dementia 25 years later. Similarly, Gottesman et al57 reported that these
same vascular risk factors were associated with elevated brain amyloid deposition in midlife but not
in later life. Our study suggests that the different associations of midlife and late-life vascular risk with
CBF may contribute to this dichotomy, especially as dysregulation in CBF would occur upstream of
β-amyloid deposition and cognitive decline. Interestingly, while midlife obesity and hypertension are
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associated with higher dementia risk, late-life measurements of these factors have been linked with
decreased mortality.4-7,9,58 Therefore, it has been suggested that low body mass index and blood
pressure, while protective in midlife, may be signatures of frailty and preclinical dementia in
older ages.7,9

Overall, we found that participants’ cardiovascular health as early as their 40s may initiate
processes associated with cerebral hypoperfusion in later life. Two cross-sectional studies59,60 have
reported even earlier associations with vascular risk associated with white matter hyperintensities
and poor cognitive performance in adults younger than 40 years. Taken together, this suggests that
dementia prevention strategies aimed at treating cardiovascular health should start at least in young
to middle adulthood; however, further studies are required to confirm this.

Limitations
Although our models account for sex and education, the Whitehall II study sample is on average more
educated and has a higher proportion of men compared with the wider population of the United
Kingdom, thus limiting the generalizability of our findings. Furthermore, while we were able to tease
apart midlife and late-life associations with vascular risk, we could not assess perfusion changes
because pCASL scans were only acquired once. We will be acquiring longitudinal imaging in this
cohort to expand on these findings in the coming years. Our study used a combined risk score and
was not sufficiently powered to distinguish the contribution of individual vascular risk factors on CBF.
Nonetheless, our findings may be relevant for dementia risk screenings, which assess overall
cardiovascular risk profiles rather than a single risk factor alone.61 Our study raises questions about
the mechanisms by which vascular risk can affect CBF. Future work in our group aims to examine
macrovascular structure and dynamic processes of perfusion regulation, such as vascular reactivity.

Conclusions

In this longitudinal cohort study, cardiovascular risk in midlife was significantly associated with lower
GM perfusion at older ages, but this association was not significant for cardiovascular risk measured
in later life. This finding could inform the timing of cardiovascular interventions so as to be optimally
effective.
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