42 research outputs found

    Design of a Customized Neck Orthosis for FDM Manufacturing with a New Sustainable Bio-composite

    Get PDF
    The interest in developing customized external orthopaedic devices, thanks to the advent of Additive Manufacturing (AM), has grown in recent years. Greater attention was focused on upper limb casts, while applications to other body’s parts, such as the neck, were less investigated. In this paper the computer aided design (CAD) modelling, assessment and 3D printing with fused deposition modelling (FDM) of a customized neck orthosis are reported. The modelling, based on anatomic data of a volunteer subject, was aimed to obtain a lightweight, ventilated, hygienic and comfortable orthosis compared to the produced medical devices generally used for neck injuries. CAD models with different geometrical patterns, introduced for lightening and improving breathability, were considered, specifically, a honeycomb pattern and an elliptical holes pattern. These models were structurally assessed by means of finite elements analysis (FEA). Furthermore, an innovative composite material was considered for 3D printing. The material, Hemp Bio-Plastic® (HBP), composed by polylactic acid (PLA) and hemp shives, offers different advantages including lightweight, improved superficial finish and antibacterial properties. The results obtained in terms of design methodology and manufacturing by 3D printing of a prototype have shown the feasibility to develop customized cervical orthoses, with potentially improved performance with respect to cervical collars available on the market also thanks to the use of the innovative composite material

    Optical character recognition on heterogeneous SoC for HD automatic number plate recognition system

    Get PDF
    Automatic number plate recognition (ANPR) systems are becoming vital for safety and security purposes. Typical ANPR systems are based on three stages: number plate localization (NPL), character segmentation (CS), and optical character recognition (OCR). Recently, high definition (HD) cameras have been used to improve their recognition rates. In this paper, four algorithms are proposed for the OCR stage of a real-time HD ANPR system. The proposed algorithms are based on feature extraction (vector crossing, zoning, combined zoning, and vector crossing) and template matching techniques. All proposed algorithms have been implemented using MATLAB as a proof of concept and the best one has been selected for hardware implementation using a heterogeneous system on chip (SoC) platform. The selected platform is the Xilinx Zynq-7000 All Programmable SoC, which consists of an ARM processor and programmable logic. Obtained hardware implementation results have shown that the proposed system can recognize one character in 0.63 ms, with an accuracy of 99.5% while utilizing around 6% of the programmable logic resources. In addition, the use of the heterogenous SoC consumes 36 W which is equivalent to saving around 80% of the energy consumed by the PC used in this work, whereas it is smaller in size by 95%

    Upper-extremity function prospectively predicts adverse discharge and all-cause COPD readmissions: a pilot study

    No full text
    Hossein Ehsani,1,2 Martha Jane Mohler,1–3 Todd Golden,2 Nima Toosizadeh1–3 1Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; 2Arizona Center on Aging, Department of Medicine, University of Arizona, Tucson, AZ, USA; 3Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA Background: Frailty can inform management approaches for individuals with COPD. However, inpatient measures of frailty are seldom employed because they are time-consuming or inapplicable for bed-bound patients. We investigated the feasibility and potential of an innovative sensor-based upper-extremity function (UEF) test for frailty assessment in predicting adverse outcomes. Methods: Hospitalized patients with COPD-related exacerbations (aged ≥55 years) were recruited and performed the UEF test within 24 hours of admission. UEF parameters were obtained and fed into our previously developed frailty model to calculate frailty status (non-frail, pre-frail, and frail) and frailty score (0: extreme resilience to 1: extreme frailty). In-hospital (length of stay) and post-discharge (discharge disposition, 30-day exacerbation with treatment, and all-cause 30-day readmission) outcomes were collected. Associations between UEF frailty and outcomes were investigated using ANOVA and logistic models adjusted for demographic data. Results: In total, 42 patients were recruited. All participants were able to perform the UEF test. Based on UEF, participants were stratified into three groups of non-frail (n=6, frailty score =0.18±0.09), pre-frail (n=14, frailty score =0.45±0.09), and frail (n=22, frailty score =0.78±0.11). Both frailty status and frailty score were significantly associated with unfavorable discharge disposition (P<0.005) and all-cause 30-day readmission (P<0.05). On the other hand, UEF frailty measures were associated with neither hospital length of stay (P>0.5) nor 30-day exacerbation with treatment (P>0.70). Age was only significantly associated with unfavorable discharge disposition (P=0.048). Conclusion: In agreement with previous work, the current findings underline the importance of measuring frailty for risk-stratification of COPD patients. The UEF was feasible and easily performed among all hospitalized COPD patients. In this study, we have shown that, using our quick and objective frailty measures, COPD patients can be prospectively risk-stratified in terms of unfavorable discharge disposition and all-cause 30-day readmissions. Keywords: COPD, frailty, adverse health outcomes, early readmission, biomechanics, gait, wearable sensor

    The effect of static neck flexion on mechanical and neuromuscular behaviors of the cervical spine

    No full text
    Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20�35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain. © 2018 Elsevier Lt

    The effect of static neck flexion on mechanical and neuromuscular behaviors of the cervical spine

    No full text
    Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20�35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain. © 2018 Elsevier Lt

    Disturbance of neck proprioception and feed-forward motor control following static neck flexion in healthy young adults

    No full text
    The highly complex proprioceptive system provides neuromuscular control of the mobile cervical spine. Static neck flexion can induce the elongation of posterior tissues and altered afferent input from the mechanoreceptors. The purpose of this study was to examine the effect of prolonged static neck flexion on neck proprioception and anticipatory postural adjustments. Thirty-eight healthy participants (20 females and 18 males) between the ages of 20�35 years with no history of neck, low back, and shoulder pain enrolled in this study. Neck proprioception and anticipatory muscle activity were tested before and after 10-min static neck flexion. For assessment of neck proprioception, each participant was asked to perform 10 trials of the cervicocephalic relocation test to the neutral head position after active neck rotation to the left and right sides. Anticipatory postural adjustments were evaluated during a rapid arm flexion test. Following the flexion, the absolute and variable errors in head repositioning significantly increased (p < 0.05). The results also showed that there was a significant delay in the onset of myoelectric activity of the cervical erector spinae muscles after flexion (p = 0.001). The results of this study suggested that a 10-min static flexion can lead to changes in the neck proprioception and feed-forward control due to mechanical and neuromuscular changes in the viscoelastic cervical spine structures. These changes in sensory-motor control may be a risk factor for neck pain and injury. © 201

    Disturbance of neck proprioception and feed-forward motor control following static neck flexion in healthy young adults

    No full text
    The highly complex proprioceptive system provides neuromuscular control of the mobile cervical spine. Static neck flexion can induce the elongation of posterior tissues and altered afferent input from the mechanoreceptors. The purpose of this study was to examine the effect of prolonged static neck flexion on neck proprioception and anticipatory postural adjustments. Thirty-eight healthy participants (20 females and 18 males) between the ages of 20�35 years with no history of neck, low back, and shoulder pain enrolled in this study. Neck proprioception and anticipatory muscle activity were tested before and after 10-min static neck flexion. For assessment of neck proprioception, each participant was asked to perform 10 trials of the cervicocephalic relocation test to the neutral head position after active neck rotation to the left and right sides. Anticipatory postural adjustments were evaluated during a rapid arm flexion test. Following the flexion, the absolute and variable errors in head repositioning significantly increased (p < 0.05). The results also showed that there was a significant delay in the onset of myoelectric activity of the cervical erector spinae muscles after flexion (p = 0.001). The results of this study suggested that a 10-min static flexion can lead to changes in the neck proprioception and feed-forward control due to mechanical and neuromuscular changes in the viscoelastic cervical spine structures. These changes in sensory-motor control may be a risk factor for neck pain and injury. © 201

    Frailty assessment using a novel approach based on combined motor and cardiac functions: a pilot study

    No full text
    Background: Previous research showed association between frailty and an impaired autonomic nervous system; however, the direct effect of frailty on heart rate (HR) behavior during physical activity is unclear. The purpose of the current study was to determine the association between HR increase and decrease with frailty during a localized upper-extremity function (UEF) task to establish a multimodal frailty test. Methods: Older adults aged 65 or older were recruited and performed the UEF task of rapid elbow flexion for 20 s with the right arm. Wearable gyroscopes were used to measure forearm and upper-arm motion, and electrocardiography were recorded using leads on the left chest. Using this setup, HR dynamics were measured, including time to peak HR, recovery time, percentage increase in HR during UEF, and percentage decrease in HR during recovery after UEF. Results: Fifty-six eligible participants were recruited, including 12 non-frail (age = 76.92 ± 7.32 years), and 40 pre-frail (age = 80.53 ± 8.12 years), and four frail individuals (age = 88.25 ± 4.43 years). Analysis of variance models showed that the percentage increase in HR during UEF and percentage decrease in HR during recovery were both 47% smaller in pre-frail/frail older adults compared to non-frails (p < 0.01, effect size = 0.70 and 0.62 for increase and decrease percentages). Using logistic models with both UEF kinematics and HR parameters as independent variables, frailty was predicted with a sensitivity of 0.82 and specificity of 0.83. Conclusion: Current findings showed evidence of strong association between HR dynamics and frailty. It is suggested that combining kinematics and HR data in a multimodal model may provide a promising objective tool for frailty assessment. © 2022, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore