125 research outputs found

    Stability constants of U(VI) and U(IV)-humic acid complexes

    Get PDF
    Conditional stability constants have been determined for U(IV) and U(VI) Boom Clay humic acid (BCHA) and Aldrich humic acid (AHA) complexes, under anaerobic and carbonate free conditions. The constants are needed for nuclear waste repository performance assessment purposes. The U(IV) constants were obtained by developing an approach based on the solubility product of amorphous U(OH)4. The U(VI) constants were obtained by applying the Schubert ion exchange approach

    HIGH-RESOLUTION SEEDING MONOCHROMATOR DESIGN FOR NGLS *

    Get PDF
    Abstract A high-resolution soft X-ray monochromator system is designed for self-seeding the next generation FEL sources. It consists of a single variable-line-spacing (VLS) grating, an exit slit, and pre-and collimating mirrors, and operates in the fixed-focus mode to achieve complete tuning of the seeding energy from 200 to 2000 eV with a nearly constant resolving power of greater than 50000, producing transform-limited seed ranging from 1 ps at 200 eV to 100 fs at 2000 eV. The optical delay is of order 1 ps, matching well with that of an electron chicane of moderate magnetic field strength. The design is based on a coherent Gaussian beam treatment of the FEL beam propagating from the upstream SASE undulator through the entire seeding monochromator system, preserving the transverse beam profile entering the downstream seeding undulator to ensure maximum coupling efficiency with the reentrant electron beam

    At-wavelength optical metrology development at the ALS

    Get PDF
    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application

    Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.

    Get PDF
    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices

    Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    Get PDF
    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm

    A comparison of five methods of measuring mammographic density: a case-control study.

    Get PDF
    BACKGROUND: High mammographic density is associated with both risk of cancers being missed at mammography, and increased risk of developing breast cancer. Stratification of breast cancer prevention and screening requires mammographic density measures predictive of cancer. This study compares five mammographic density measures to determine the association with subsequent diagnosis of breast cancer and the presence of breast cancer at screening. METHODS: Women participating in the "Predicting Risk Of Cancer At Screening" (PROCAS) study, a study of cancer risk, completed questionnaires to provide personal information to enable computation of the Tyrer-Cuzick risk score. Mammographic density was assessed by visual analogue scale (VAS), thresholding (Cumulus) and fully-automated methods (Densitas, Quantra, Volpara) in contralateral breasts of 366 women with unilateral breast cancer (cases) detected at screening on entry to the study (Cumulus 311/366) and in 338 women with cancer detected subsequently. Three controls per case were matched using age, body mass index category, hormone replacement therapy use and menopausal status. Odds ratios (OR) between the highest and lowest quintile, based on the density distribution in controls, for each density measure were estimated by conditional logistic regression, adjusting for classic risk factors. RESULTS: The strongest predictor of screen-detected cancer at study entry was VAS, OR 4.37 (95% CI 2.72-7.03) in the highest vs lowest quintile of percent density after adjustment for classical risk factors. Volpara, Densitas and Cumulus gave ORs for the highest vs lowest quintile of 2.42 (95% CI 1.56-3.78), 2.17 (95% CI 1.41-3.33) and 2.12 (95% CI 1.30-3.45), respectively. Quantra was not significantly associated with breast cancer (OR 1.02, 95% CI 0.67-1.54). Similar results were found for subsequent cancers, with ORs of 4.48 (95% CI 2.79-7.18), 2.87 (95% CI 1.77-4.64) and 2.34 (95% CI 1.50-3.68) in highest vs lowest quintiles of VAS, Volpara and Densitas, respectively. Quantra gave an OR in the highest vs lowest quintile of 1.32 (95% CI 0.85-2.05). CONCLUSIONS: Visual density assessment demonstrated a strong relationship with cancer, despite known inter-observer variability; however, it is impractical for population-based screening. Percentage density measured by Volpara and Densitas also had a strong association with breast cancer risk, amongst the automated measures evaluated, providing practical automated methods for risk stratification

    Near-edge X-ray Refraction Fine Structure Microscopy

    Get PDF
    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-rayptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can see nearly five-fold improved spatial resolutionon resonance
    corecore