687 research outputs found

    Beam lead technology

    Get PDF
    Beam lead technology for microcircuit interconnections with applications to metallization, passivation, and bondin

    Relative Roles of TGF-β and IGFBP-5 in Idiopathic Pulmonary Fibrosis

    Get PDF
    Although most evident in the skin, the process of scarring, or fibrosis, occurs in all major organs because of impaired epithelial self-renewal. No current therapy exists for Idiopathic pulmonary fibrosis. The major profibrotic factor is TGF-β1 and developing inhibitors is an area of active research. Recently, IGFBP-5 has also been identified as a profibrotic factor, and studies suggest that, while both TGF-β1 and IGFBP-5 activate mesenchymal cells to increase collagen and fibronectin production, their effects on epithelial cells are distinct. TGF-β1 induces cell death and/or EMT in the epithelial cells, exacerbating the disruption of tissue architecture. In contrast, IGFBP-5 induces epithelial cell spreading over collagen or fibronectin matrices, increases secretion of laminin, the epithelial basement membrane, and enhances the survival of epithelial cells in nutrient-poor conditions, as exists in scar tissue. Thus, IGFBP-5 may enhance repair and may be an important target for antifibrotic therapies

    Differential Photoelectron Holography: A New Approach for Three-Dimensional Atomic Imaging

    Full text link
    We propose differential holography as a method to overcome the long-standing forward-scattering problem in photoelectron holography and related techniques for the three-dimensional imaging of atoms. Atomic images reconstructed from experimental and theoretical Cu 3p holograms from Cu(001) demonstrate that this method suppresses strong forward-scattering effects so as to yield more accurate three-dimensional images of side- and back-scattering atoms.Comment: revtex, 4 pages, 2 figure

    Quantum Rotor Engines

    Full text link
    This chapter presents autonomous quantum engines that generate work in the form of directed motion for a rotor. We first formulate a prototypical clock-driven model in a time-dependent framework and demonstrate how it can be translated into an autonomous engine with the introduction of a planar rotor degree of freedom. The rotor plays both the roles of internal engine clock and of work repository. Using the example of a single-qubit piston engine, the thermodynamic performance is then reviewed. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation; and we compare them with the actual energy output to an external dissipative load. The chapter closes with a quantum-classical comparison of the engine's dynamics. For the single-qubit piston example, we propose two alternative representations of the qubit in an entirely classical framework: (i) a coin flip model and (ii) a classical magnet moment, showing subtle differences between the quantum and classical descriptions.Comment: Chapter of the upcoming book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook

    "Too good to be true" : semi-naked bodies on social media

    Get PDF
    This chapter examines how body image deception is created and understood in social media. The au-thors focus specifically on the beach body, which is a narrower form of bodily representation online, but where deception is especially likely to occur. Focus group discussions with young adults revealed that editing and perfecting the beach body is commonplace and even normalized on social media. However, participants distinguished between celebrities and friends in expected use of manipulation and seemed to place a limit on the acceptable types of manipulation: body tan but not body shape, for example. The authors discuss the implications of these discussions and how applying deception theory in body image research can provide useful insights

    Iridium complexes of the conformationally rigid IBioxMe4Ligand : hydride complexes and dehydrogenation of cyclooctene

    Get PDF
    A method for accessing the formally 14 VE iridium(III) hydride fragment {Ir(IBioxMe4)2(H)2}+ (2), containing the conformationally rigid NHC ligand IBioxMe4, is reported. Hydrogenation of trans-[Ir(IBioxMe4)2(COE)Cl] (1) in the presence of excess Na[BArF4] leads to the formation of dimeric [{Ir(IBioxMe4)2(H)2}2Cl][BArF4] (3), which is structurally fluxional in solution and acts as a reservoir of monomeric 2 in the presence of excess halogen ion abstractor. Stable dihydride complexes trans-[Ir(IBioxMe4)2(2,2′-bipyridine)(H)2][BArF4] (4) and [Ir(IBioxMe4)3(H)2][BArF4] (5) were subsequently isolated through in situ trapping of 2 using 2,2′-bipyridine and IBioxMe4, respectively, and fully characterized. Using mixtures of 3 and Na[BArF4] as a latent source of 2, the reactive monomeric fragment’s reactivity was explored with excess ethylene and cyclooctene, and trans-[Ir(IBioxMe4)2(C2H4)2][BArF4] (6) and cis-[Ir(IBioxMe4)2(COD)][BArF4] (7) were isolated, respectively, through sacrificial hydrogenation of the alkenes. Complex 6 is notable for the adoption of a very unusual orthogonal arrangement of the trans-ethylene ligands in the solid state, which has been analyzed computationally using energy and charge decomposition (EDA-NOCV). The formation of 7 via transfer dehydrogenation of COE highlights the ability to partner IBioxMe4 with reactive metal centers capable of C–H bond activation, without intramolecular activation. Reaction of 7 with CO slowly formed trans-[Ir(IBioxMe4)2(CO)2][BArF4] (8), but the equivalent reaction with bis-ethylene 6 was an order of magnitude faster, quantifying the strong coordination of COD in 7

    The role of socially driven community food projects in a networked approach to tackling food insecurity

    Get PDF
    Food insecurity, commonly defined as the inability to acquire or consume an adequate quality or sufficient quantity of food in socially acceptable ways, or the uncertainty that one will be able to do so (Dowler et al, 2001), has come to the forefront of UK political, media and public attention. Neoliberal policies are often cited as a determinant of food insecurity, ultimately leading to inequalities. However the current UK reality of a 'leaner welfare state and an ever-increasing reluctance to interfere with any kind of market' (Lambie-Mumford, 2015, pg. 19) requires the pressing problem of food insecurity to be addressed not only by the State or individual stakeholders but rather by taking a 'networked approach' (ibid). Community food projects may have a role to play in this networked approach. These socially driven, locally based, grass roots organisations are often located in low income communities and undertake a range of initiatives which may have outcomes including increasing economic and physical access to food, improving participants confidence, reducing social isolation (McGlone, 1999). They may also undertake advocacy and lobbying (Lambie-Mumford et al 2014). Whilst 'shifting the responsibility' for tackling food insecurity away from the State toward civil society has been criticised (eg. Fabian Society 2015) the recognition of the current need for a networked approach re-energises the identification of other stakeholders. Therefore, utilising an ongoing case study approach, this research reports on initial findings as to the extent which community food projects can contribute to a networked approach to tackling food insecurit

    Relative Roles of TGF-β and IGFBP-5 in Idiopathic Pulmonary Fibrosis

    Get PDF
    Although most evident in the skin, the process of scarring, or fibrosis, occurs in all major organs because of impaired epithelial self-renewal. No current therapy exists for Idiopathic pulmonary fibrosis. The major profibrotic factor is TGF-β1 and developing inhibitors is an area of active research. Recently, IGFBP-5 has also been identified as a profibrotic factor, and studies suggest that, while both TGF-β1 and IGFBP-5 activate mesenchymal cells to increase collagen and fibronectin production, their effects on epithelial cells are distinct. TGF-β1 induces cell death and/or EMT in the epithelial cells, exacerbating the disruption of tissue architecture. In contrast, IGFBP-5 induces epithelial cell spreading over collagen or fibronectin matrices, increases secretion of laminin, the epithelial basement membrane, and enhances the survival of epithelial cells in nutrient-poor conditions, as exists in scar tissue. Thus, IGFBP-5 may enhance repair and may be an important target for antifibrotic therapies

    Rhodium(I) and Iridium(I) complexes of the conformationally rigid IBioxMe4Ligand : computational and experimental studies of unusually tilted NHC coordination geometries

    Get PDF
    Computational methods have been used to analyze distorted coordination geometries in a coherent range of known and new rhodium(I) and iridium(I) complexes containing bioxazoline-based NHC ligands (IBiox). Such distortions are readily placed in context of the literature through measurement of the Cnt(NHC)–CNCN–M angle (ΘNHC; Cnt = ring centroid). On the basis of restricted potential energy calculations using cis-[M(IBioxMe4)(CO)2Cl] (M1; M = Rh, Ir), in-plane (yawing) tilting of the NHC was found to incur significantly steeper energetic penalties than orthogonal out-of-plane (pitching) movement, which is characterized by noticeably flat potential energy surfaces. Energy decomposition analysis (EDA) of the ground-state and pitched structures of M1 indicated only minor differences in bonding characteristics. In contrast, yawing of the NHC ligand is associated with a significant increase in Pauli repulsion (i.e., sterics) and reduction in M→NHC π back donation, but is counteracted by supplemental stabilizing bonding interactions only possible due to the closer proximity of the methyl substituents with the metal and ancillary ligands. Aided by this analysis, comparison with a range of carefully selected model systems and EDA, distorted coordination modes in trans-[M(IBioxMe4)2(COE)Cl] (M2; M = Rh, Ir) and [M(IBioxMe4)3]+ (M3; M = Rh, Ir) have been rationalized. Steric interactions were identified as the major contributing factor and are associated with a high degree of NHC pitching. In the case of Rh3, weak agostic interactions also contribute to the distortions, particularly with respect to NHC yawing, and are notable for increasing the bond dissociation energy of the distorted ligands. Supplementing the computational analysis, an analogue of the formally 14 VE Rh(I) species Rh3 bearing the cyclohexyl-functionalized IBiox6 ligand ([Rh(IBiox6)3]+, Rh3-Cy) was prepared and found to exhibit an exceptionally distorted NHC ligand (ΘNHC = 155.7(2)°) in the solid state
    corecore