1,155 research outputs found

    Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels

    Get PDF
    The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation. To obtain a deeper insight into the mechanism of channel formation, it is useful to know the dependence of self-assembling on peptide concentration. With this aim, we studied Alm F50/5 spin-labeled analogs in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, for peptide-to-lipid (P/L) ratios varying between 1/1500 and 1/100. Pulsed electron-electron double resonance (PELDOR) spectroscopy reveals that even at the lowest concentration investigated, the Alm molecules assemble into dimers. Moreover, under these conditions, electron spin echo envelope modulation (ESEEM) spectroscopy of D2O-hydrated membranes shows an abrupt change from the in-plane to the trans-membrane orientation of the peptide. Therefore, we hypothesize that dimer formation and peptide reorientation are concurrent processes and represent the initial step of peptide self-assembling. By increasing peptide concentration, higher oligomers are formed. A simple kinetic model of equilibrium among monomers, dimers, and pentamers allows for satisfactorily describing the experimental PELDOR data. The inter-label distances in the oligomers obtained from PELDOR experiments become better resolved with increasing P/L ratio, thus suggesting that the supramolecular organization of the higher-order oligomers becomes more defined

    Extensive reuse of soda-lime waste glass in fly ash-based geopolymers

    Get PDF
    The possibility of extensive incorporation of soda-lime waste glass in the synthesis of fly ash-based geopolymers was investigated. Using waste glass as silica supplier avoids the use of water glass solution as chemical activator. The influence of the addition of waste glass on the microstructure and strength of fly ash-based geopolymers was studied through microstructural and mechanical characterization. Leaching analyses were also carried out. The samples were developed changing the SiO2/Al2O3 molar ratio and the molarity of the sodium hydroxide solution used as alkaline activator. The results suggest that increasing the amount of waste glass as well as increasing the molarity of the solution lead to the formation of zeolite crystalline phases and an improvement of the mechanical strength. Leaching results confirmed that the new geopolymers have the capability to immobilize heavy metal ions

    A portable electrochemiluminescence aptasensor for β-lactoglobulin detection

    Get PDF
    Cow’s milk allergy is one of the most common food allergies in children with a prevalence of around 2.5%. Milk contains several allergens; the main ones are caseins and β-lactoglobulin (β-LG). At regulatory level, β-LG is not explicitly named, but milk is included in the list of substances or products causing allergies or intolerances. Hence, the presence of β-LG can be a useful marker for determining the presence of milk in food. In this work, we present an aptasensor based on electrochemiluminescence (ECL) for the quantification of β-LG in real food matrices displaying integrated advantages consisting of high specificity, good sensitivity, portability, and cost effectiveness. The performance and applicability of this sensor were tested by analyzing a sample of skimmed milk and an oat-based drink proposed as a vegetable substitute for milk of animal origin. We obtained a linear correlation between the intensity of the signal and the concentration of β-LG standard solutions (y = x * 0.00653 + 1.038, R2 = 0.99). The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.36 and 4.55 μg L−1, respectively. Graphical abstract: [Figure not available: see fulltext.

    Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    Get PDF
    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2

    Verification of a Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation

    Get PDF
    This paper discusses the verification of the Constraint Force Equation (CFE) methodology and its implementation in the Program to Optimize Simulated Trajectories II (POST2) for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint; the second case involves two rigid bodies connected with a universal joint; and the third test case is that of Mach 7 separation of the Hyper-X vehicle. For the first two cases, the POST2/CFE solutions compared well with those obtained using industry standard benchmark codes, namely AUTOLEV and ADAMS. For the Hyper-X case, the POST2/CFE solutions were in reasonable agreement with the flight test data. The CFE implementation in POST2 facilitates the analysis and simulation of stage separation as an integral part of POST2 for seamless end-to-end simulations of launch vehicle trajectories

    Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology

    Get PDF
    This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectorie

    Novel geopolymers incorporating red mud and waste glass cullet

    Get PDF
    Red mud presents significant environmental problems, so that its incorporation in geopolymers could represent an alternative solution to produce valuable products from this residue. Novel geopolymers using red mud as source of alumina and waste glass as silica supplier were developed, using sodium hydroxide as the only ` non- waste' material. The formation of a homogeneous polymeric gel, confirmed by solid- state NMR and EDX analysis, promoted the stabilization of possible pollutants. Moreover, the materials exhibit a remarkable compressive strength (up to 45 MPa, for 60 wt% red mud)
    • …
    corecore