11 research outputs found
The complex interaction between microstructural features and crack evolution during cyclic testing in heat-treated AlâSiâMgâCu cast alloys
Abstract The study aimed to investigate crack initiation and propagation at the micro-scale in heat-treated Alâ7SiâMg cast alloys with different copper (Cu) contents. In-situ cyclic testing in a scanning electron microscope coupled with electron back-scattered diffraction and digital image correlation was used to evaluate the complex interaction between the crack path and the microstructural features. The three-nearest-neighbour distance of secondary particles was a new tool to describe the crack propagation in the alloys. The amount of Cu retained in the α-Al matrix after heat treatment increased with the Cu content in the alloy and enhanced the strength with a slight decrease in elongation. During cyclic testing, the two-dimensional (2D) crack path appeared with a mixed propagation, both trans- and inter-granular, regardless of the Cu content of the alloy. On fracture surfaces, multiple crack initiation points were detected along the thickness of the samples. The debonding of silicon (Si) particles took place during crack propagation in the Cu-free alloy, while cracking of Si particles and intermetallic phases occurred in the alloy with 3.2 wt% Cu. Three-dimensional tomography using focused ion beam revealed that the improved strength of the α-Al matrix changes the number of cracked particles ahead of the propagating crack with Cu concentration above 1.5 wt%
The effect of microstructural features, defects and surface quality on the fatigue performance in Al-Si-Mg Cast alloys
Global warming is driving industry to manufacture lighter components to reduce carbon dioxide (CO2) emissions. Promising candidates for achieving this are aluminium-silicon (Al-Si) cast alloys, which offer a high weight-to-strength ratio, excellent corrosion resistance, and good castability. However, understanding variations in the mechanical properties of these alloys is crucial to producing high-performance parts for critical applications. Defects and oxides are the primary reasons cast components in fatigue applications are rejected, as they negatively impact mechanical properties. A comprehensive understanding of the correlation between fatigue performance and parameters such as the α-aluminium matrix, Al-Si eutectic, surface roughness, porosities, hydrogen content, oxides, and intermetallic phases in Al-Si castings has not been reached. The research presented in this thesis used state-of-the-art experimental techniques to investigate the mechanical properties and crack-initiation and propagation behaviour of Al-Si-Mg cast alloy under cyclic loading. In-situ cyclic testing was conducted using scanning electron microscopy (SEM) combined with electron back-scattered diffraction (EBSD), digital image correlation (DIC), and focused ion beam (FIB) milling. These techniques enabled a comprehensive study of parameters affecting fatigue performance, including hydrogen content, surface roughness, oxides, and intermetallic phases. More specifically, we investigated the effect of melt quality, copper (Cu) content, oxide bifilms, surface quality, and porosity. The increased Cu concentration in heat-treated Al-Si alloys increased the amount of intermetallic phases, which affected the cracking behaviour. Furthermore, oxide bifilms were detected at crack-initiation sites, even in regions far away from the highly strained areas. Si- and Iron (Fe)-rich intermetallics were observed to have precipitated on these bifilms. Due to their very small size, these oxides are generally not detected by non-destructive inspections, but affect mechanical properties because they appear to open at relatively low tensile stresses. Finally, Al-Si alloy casting skins showed an interesting effect in terms of improving fatigue performance, highlighting the negative effect of surface polishing for such alloys.KlimatförÀndringar runt om i vÀrlden driver industrin att tillverka lÀttare komponenter för att minska utslÀppen av koldioxid (CO2). Lovande kandidater för att uppnÄ detta Àr aluminium-silikon (Al-Si) gjutna legeringar, som erbjuder hög vikt-till-styrkeförhÄllande, utmÀrkt korrosionsbestÀndighet och god gjutbarhet. FörstÄelsen av variationer i de mekaniska egenskaperna hos dessa legeringar Àr dock avgörande för att producera högpresterande komponenter för kritiska tillÀmpningar. Defekter och oxider Àr de frÀmsta orsakerna till att gjutna komponenter i utmattningsapplikation avvisas, eftersom de pÄverkar de mekaniska egenskaperna negativt. En heltÀckande förstÄelse av sambandet mellan mekaniska egenskaper och parametrar som mikrostrukturella faser, ytfinhet, porositet och oxider i Al-Si-gjutningar har Ànnu inte blivit fullstÀndigt kartlagd. Forskningen som presenteras i denna avhandling anvÀnde toppmoderna experimentella tekniker för att undersöka de mekaniska egenskaperna samt initiering och propagering av sprickor i Al-Si-Mg-gjutgods under utmattningstester. Dessa tekniker möjliggjorde en omfattande studie av parametrar som pÄverkar utmattningen, inklusive vÀteinnehÄll, ytfinhet, oxider och intermetalliska faser. Den ökade Cu-koncentrationen i vÀrmebehandlade Al-Si-legeringar ökade mÀngden intermetalliska faser, vilket pÄverkade sprickbeteendet. Vidare upptÀcktes oxidfilmer pÄ platser dÀr sprickor initierades, Àven i omrÄden lÄngt borta frÄn de mest pÄverkade omrÄdena Kisel och jÀrnfaser observerades ha kÀrnbildat pÄ dessa oxidfilmer. PÄ grund av deras mycket smÄ storlek upptÀcks dessa oxider vanligtvis inte av icke-destruktiva inspektioner, men de pÄverkar mekaniska egenskaper eftersom de tycks öppna vid relativt lÄga dragspÀnningar. Slutligen visade gjutskinnet pÄ Al-Si-komponenter en intressant effekt nÀr det förbÀttrade utmattningsegenskaperna och belyser den negativa effekten av bearbetning pÄ dessa komponenter
The influence of microstructure on the crack initiation and propagation in Al-Si casting alloys
For reducing the CO2 footprint in many industrial fields, the goal is to produce lighter components. The aluminium-silicon (Al-Si) cast alloys are promising candidates to fulfill these goals with a high weight-to-strength ratio, good corrosion properties, excellent castability, and recyclable material. However, the variations within these components need to be understood to produce high-performance components for critical applications. The main reason for the rejection in these applications is defects and microstructural features that reduce the mechanical properties. The addition of copper (Cu) is one way of increasing the mechanical properties in Al-Si alloys and is commonly used in the automotive industry. Casting defects harm the mechanical properties, and these defects can be reduced by improving the melt quality, the correct design of the component, and the gating system. The study aims to investigate the static mechanical properties and the crack initiation and propagation under cyclic loading in an Al-7Si-Mg cast alloy with state-of-the-art experiments. The main focuses were on the effect of the HIP process and the role of Cu addition. In-situ cyclic testing using a scanning electron microscope coupled with electron back-scattered diffraction, digital image correlation, focused ion beam (FIB) slicing, and computed tomography scanning was used to evaluate the complex interaction between the crack path and the microstructural features. The amount of Cu retained in the α-Al matrix in as-cast and heat-treated conditions significantly influenced the static mechanical properties by increasing yield strength and ultimate tensile strength with a decrease in elongation. The three-nearest-neighbor distance of eutectic Si and Cu-rich particles and crack tortuosity were new tools to describe the crack propagation in the alloys, showing that a reduced distance between the Cu-rich phases is detrimental for the mechanical properties. Three dimensional tomography using a FIB revealed that the alloy with 3.2 wt.% Cu had a significantly increased quantity of cracked Si particles and intermetallic phases ahead of the crack tip than the Cu-free alloy. The effect of Cu and HIP process in this work shows the complex interaction between the microstructural features and the mechanical properties, and this needs to be considered to produce high-performance components.Ett sÀtt att nÄ mÄlen med minskade koldioxidutslÀpp inom industrin Àr att producera lÀttare komponenter. Aluminium-kisel (Al-Si) gjutna legeringar Àr dÀrför ett bra alternativ dÄ dessa legeringar har ett bra förhÄllande mellan hÄllfasthet och vikt, goda korrosionsegenskaper, utmÀrkt gjutbarhet och Àr ett Ätervinningsbart material. En av de största utmaningarna för att producera högpresterande komponenter för kritiska applikationer Àr variationerna i egenskaper inom dessa komponenter. Orsaken till att inte gjutna Al-Si legeringar andvÀnds i dessa applikationer Àr förstÄelsen av defekter och mikrostruktuella faser pÄverkar de mekaniska egenskaperna negativt. Koppar (Cu) tillsÀtts i Al-Si legeringar för att öka de mekaniska egenskaperna vilket ofta nyttjas inom bilindustrin. Hot isostatic pressing (HIP) prosessen Àr en annan möjlighet att förbÀttra de mekaniska egenskaperna genom att reducera porositeter i materialet. Studien syftar till att undersöka de mekaniska egenskaperna och sprickinitiering och spricktillvÀxt i en gjuten legering av Al-7Si-Mg med utmattningstestning i svepelektronmikroskop (SEM) i kombination med electron backscatter diffraction, digital image correlation och focused ion beam (FIB). MÀngden Cu i Al-Si legeringen pÄverkade de statiska mekaniska egenskaperna genom att öka strÀckgrÀnsen och brottgrÀnsen. Tillsats av Cu upp till 1.5 vikt.% pÄverkar inte spricktillvÀxten mÀrkbart. DÀremot förÀndras beteendet markant vid tillsatser av Cu pÄ mer Àn 3.0 vikt.% som resulterade i en markant reducering i duktilitet. I det vÀrmebehandlade materialet pÄverkades de mekaniska egenskaperna av Al-matrisen och mÀngden intermetalliska faser. AvstÄndet mellan Cu faserna och Si faserna anvÀnds för att beskriva spricktillvÀxten i Al-Si legeringarna. Detta tillsammans med tredimensionell tomografi visade att legeringen med 3.2 vikt.% Cu hade en ökad mÀngd sprickor i omrÄdet framför den avancerande sprickan, vilket inte den Cu fria legeringen visade. Al-Si legeringen som utsattes för HIP-processen och vÀrmebehandlingen visade att materialets mikrostruktur i gjutet tillstÄnd pÄverkade resultatet. HIP processen slöt porositerena i alla undersökta prover och förbÀttrade de mekaniska egenskaperna. Dessa resultat kommer kunna anvÀndas för att konstruera mer högpresterande komponenter
Development of aluminium-silicon alloys with improved properties at elevated temperature
Aluminium-silicon alloys have gained increasing market share in the automotive and aerospace industry because of increased environmental demands. These alloys have a high strength-to-weight ratio, good corrosion resistance, castability and recycling potential. However, variations in properties and limited performance at elevated temperature are restricting these alloys from use at elevated temperatures. During the last decades, researchers have investigated ways to improve the properties at elevated temperatures. However, the effect of some transition elements is not well understood. The aim of this work is to investigate the aluminium-silicon alloys with addition of cobalt and nickel for high temperature applications. Tensile testing and hardness testing were conducted on samples produced by directional solidification in a Bridgman furnace with condition generating a microstructure corresponding to that obtained in high pressure die casting, i.e. SDAS ~ 10 ”m. The results show that cobalt and nickel improve the tensile properties up to 230 °C
The effect of microstructural features, defects and surface quality on the fatigue performance in Al-Si-Mg Cast alloys
Global warming is driving industry to manufacture lighter components to reduce carbon dioxide (CO2) emissions. Promising candidates for achieving this are aluminium-silicon (Al-Si) cast alloys, which offer a high weight-to-strength ratio, excellent corrosion resistance, and good castability. However, understanding variations in the mechanical properties of these alloys is crucial to producing high-performance parts for critical applications. Defects and oxides are the primary reasons cast components in fatigue applications are rejected, as they negatively impact mechanical properties. A comprehensive understanding of the correlation between fatigue performance and parameters such as the α-aluminium matrix, Al-Si eutectic, surface roughness, porosities, hydrogen content, oxides, and intermetallic phases in Al-Si castings has not been reached. The research presented in this thesis used state-of-the-art experimental techniques to investigate the mechanical properties and crack-initiation and propagation behaviour of Al-Si-Mg cast alloy under cyclic loading. In-situ cyclic testing was conducted using scanning electron microscopy (SEM) combined with electron back-scattered diffraction (EBSD), digital image correlation (DIC), and focused ion beam (FIB) milling. These techniques enabled a comprehensive study of parameters affecting fatigue performance, including hydrogen content, surface roughness, oxides, and intermetallic phases. More specifically, we investigated the effect of melt quality, copper (Cu) content, oxide bifilms, surface quality, and porosity. The increased Cu concentration in heat-treated Al-Si alloys increased the amount of intermetallic phases, which affected the cracking behaviour. Furthermore, oxide bifilms were detected at crack-initiation sites, even in regions far away from the highly strained areas. Si- and Iron (Fe)-rich intermetallics were observed to have precipitated on these bifilms. Due to their very small size, these oxides are generally not detected by non-destructive inspections, but affect mechanical properties because they appear to open at relatively low tensile stresses. Finally, Al-Si alloy casting skins showed an interesting effect in terms of improving fatigue performance, highlighting the negative effect of surface polishing for such alloys.KlimatförÀndringar runt om i vÀrlden driver industrin att tillverka lÀttare komponenter för att minska utslÀppen av koldioxid (CO2). Lovande kandidater för att uppnÄ detta Àr aluminium-silikon (Al-Si) gjutna legeringar, som erbjuder hög vikt-till-styrkeförhÄllande, utmÀrkt korrosionsbestÀndighet och god gjutbarhet. FörstÄelsen av variationer i de mekaniska egenskaperna hos dessa legeringar Àr dock avgörande för att producera högpresterande komponenter för kritiska tillÀmpningar. Defekter och oxider Àr de frÀmsta orsakerna till att gjutna komponenter i utmattningsapplikation avvisas, eftersom de pÄverkar de mekaniska egenskaperna negativt. En heltÀckande förstÄelse av sambandet mellan mekaniska egenskaper och parametrar som mikrostrukturella faser, ytfinhet, porositet och oxider i Al-Si-gjutningar har Ànnu inte blivit fullstÀndigt kartlagd. Forskningen som presenteras i denna avhandling anvÀnde toppmoderna experimentella tekniker för att undersöka de mekaniska egenskaperna samt initiering och propagering av sprickor i Al-Si-Mg-gjutgods under utmattningstester. Dessa tekniker möjliggjorde en omfattande studie av parametrar som pÄverkar utmattningen, inklusive vÀteinnehÄll, ytfinhet, oxider och intermetalliska faser. Den ökade Cu-koncentrationen i vÀrmebehandlade Al-Si-legeringar ökade mÀngden intermetalliska faser, vilket pÄverkade sprickbeteendet. Vidare upptÀcktes oxidfilmer pÄ platser dÀr sprickor initierades, Àven i omrÄden lÄngt borta frÄn de mest pÄverkade omrÄdena Kisel och jÀrnfaser observerades ha kÀrnbildat pÄ dessa oxidfilmer. PÄ grund av deras mycket smÄ storlek upptÀcks dessa oxider vanligtvis inte av icke-destruktiva inspektioner, men de pÄverkar mekaniska egenskaper eftersom de tycks öppna vid relativt lÄga dragspÀnningar. Slutligen visade gjutskinnet pÄ Al-Si-komponenter en intressant effekt nÀr det förbÀttrade utmattningsegenskaperna och belyser den negativa effekten av bearbetning pÄ dessa komponenter
The influence of copper on an Al-Si-Mg alloy (A356) - Microstructure and mechanical properties
Aluminum alloys are widely used in many manufacturing areas due to good castability, lightness and mechanical properties. The purpose of this research is to investigate copperâs influence on an Al-Si-Mg alloy (A356). Copper in the range of 0.6 â 1.6 wt. % has been used in an A356 aluminum based alloy. In this work a simulation of three different casting processes, sand-, die- and high pressure die-casting has been employed with the help of gradient solidification equipment. The microstructure of the samples has been studied by optical and scanning electron microscopy. Materials in both as-cast and heat treated states have been investigated through tensile test bars  to get the mechanical properties of the different conditions.  Questions that have been subjected to answer are what influence does copper have on the plastic deformation and on fracture behavior and whether there is a relationship between the content of copper and increased porosity or not; and in that case explore this relationship  between the amount of copper and the mechanical behaviour.  It has been analyzed that a peak of mechanical properties is obtained with a content about 1.6 wt. % copper. The increment of copper seems to have a remarkable impact on the mechanical properties and especially after the aging process showing a large raise on the ultimate tensile strength and yield strength. Relationship between the copper content and increased porosity could not be found
Effect of Co and Ni Addition on the Microstructure and Mechanical Properties at Room and Elevated Temperature of an Alâ7%Si Alloy
Increasing environmental demands are forcing the automotive industry to reduce vehicle emissions by producing more light-weight and fuel efficient vehicles. AlâSi alloys are commonly used in automotive applications because of excellent castability, high thermal conductivity, good wear properties and high strength-to-weight ratio. However, most of the aluminium alloys on the market exhibit significantly reduced strength at temperatures above 200 °C. This paper presents results of a study of the effects of Co and Ni in a hypoeutectic AlâSi alloy on microstructure and mechanical properties at room and elevated temperature. Tensile test specimens with microstructures comparable to those obtained in high-pressure die casting, i.e. SDAS ~ 10 ”m, were produced by directional solidification in a Bridgman furnace. The results show an improvement in tensile properties up to 230 °C
The effect of SI content on microstructure and mechanical properties of Al-Si alloy
Al-Si alloys are the most popular casting alloys due to their excellent castability combined with high strengthto-weight ratio. This paper investigates the role of Si content in the range of 6.5 wt. % to 14.4 wt. % on the microstructure and mechanical properties of Al-Si-Mg casting alloys. All alloys were modified with 90-150 ppm Sr. No grain refiner was added. The samples were produced by directional solidification providing a microstructure that corresponds to microstructures found in die castings. From the phase diagram and coupled zone, increasing the Si level up to 14.4 wt. % is expected to start a competition between formation of α- dendrites and a fully eutectic microstructure. However, it is known that Sr-modification shifts the eutectic to higher Si contents. For the lower Si contents, the microstructure of the samples consisted of α-dendrites and a modified Al-Si eutectic. At 12.4 wt. % Si and above, a cellular eutectic microstructure was observed. No primary Si was observed even at 14.4 wt. % Si. The mechanical properties in terms of yield and tensile strength did not vary remarkably as a function of the Si level unlike the elongation to failure that dropped from 12 % at 6.5 wt. % Si to nearly 6 % at 14.4 wt. % Si; but still the material is exhibiting an elongation to failure that is far higher than normally expected
The effect of SI content on microstructure and mechanical properties of Al-Si alloy
Al-Si alloys are the most popular casting alloys due to their excellent castability combined with high strengthto-weight ratio. This paper investigates the role of Si content in the range of 6.5 wt. % to 14.4 wt. % on the microstructure and mechanical properties of Al-Si-Mg casting alloys. All alloys were modified with 90-150 ppm Sr. No grain refiner was added. The samples were produced by directional solidification providing a microstructure that corresponds to microstructures found in die castings. From the phase diagram and coupled zone, increasing the Si level up to 14.4 wt. % is expected to start a competition between formation of α- dendrites and a fully eutectic microstructure. However, it is known that Sr-modification shifts the eutectic to higher Si contents. For the lower Si contents, the microstructure of the samples consisted of α-dendrites and a modified Al-Si eutectic. At 12.4 wt. % Si and above, a cellular eutectic microstructure was observed. No primary Si was observed even at 14.4 wt. % Si. The mechanical properties in terms of yield and tensile strength did not vary remarkably as a function of the Si level unlike the elongation to failure that dropped from 12 % at 6.5 wt. % Si to nearly 6 % at 14.4 wt. % Si; but still the material is exhibiting an elongation to failure that is far higher than normally expected
Hall-Petch Equation in a Hypoeutectic Al-Si Cast Alloy : Grain Size vs. Secondary Dendrite Arm Spacing
The Al-Si cast alloy family is widely used in the production of complex castings for various applications and known for its very good castability and high strength-to-weight ratio. However, early cracking under tensile loading is sometimes a limiting factor. Among other parameters, it is yet controversial whether grain boundaries are dominant strengthening factor in cast alloys, instead of dendrite/eutectic boundaries. This study presents the effect of secondary dendrite arm spacing (SDAS) and grain size on crack initiation and propagation of Al-Si cast alloys under tensile loading. The Al-10Si (wt.%) alloy with modified Si morphology was cast using inoculants (Al-5Ti-B master alloy) under different cooling rates to obtain a range of grain sizes (from below 138 ÎŒm to above 300 ÎŒm) and SDAS (6, 15 and 35 ÎŒm). Conventional tensile test as well as in-situ tensile test in a scanning electron microscope, equipped with an electron backscatter diffraction (EBSD) was carried out to understand the deformation mechanisms of the alloy. Observation of slip bands within the dendrites showed that in modified Si structure, the interdendritic (eutectic) area takes more portion of the strain during plastic deformation. Besides, only a few cracks were initiated at the grain boundaries; they were mostly initiated from dendrite/eutectic interface. All cracks propagated trans-granularly. Hall-Petch calculations also showed a strong relationship between SDAS and flow stress of the cast alloy. Although statistically correct, there was no physically meaningful relationship between the grain size and the flow stress. Nevertheless, formation of identical slip bands in each grain could be an evidence for the marginal effect of the grain size on the overall strength development of the alloy. Consequently, among other effects, the combinational dominant effect of SDAS and modest effect of grain size shall be considered for modification of the Hall-Petch equation for precise prediction of mechanical properties of cast alloys