8 research outputs found

    Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology

    Get PDF
    We have demonstrated a polymer mediated “bricks and mortar” method for the self-assembly of quantum dots (QDs). This strategy allows QDs to self-assemble into structured aggregates using complementary three-point hydrogen bonding. The resulting nanocomposites have distinct morphologies and inter-particle distances based on the ratio between QDs and polymer. Time resolved photoluminescence measurements showed that the optical properties of the QDs were retained after self-assembly

    A narrow range multielectrochromism from 2,5-di-(2-thienyl)-1H-pyrrole polymer bearing pendant perylenediimide moiety

    No full text
    WOS: 000346543200016A new 2,5-di-(2-thienyl)-1H-pyrrole (SNS) moiety containing perylenediimide (PDI) acceptor as pendant side chain has been synthesized for an electroactive monomer and then directly deposited onto ITO/glass surface via electrochemical polymerization process. The observed electronic interaction only at the excited state due to the presence of phenylene spacer between SNS-donor and PDI-acceptor moiety leads to efficient fluorescence quenching. This charge separation behavior was also proved by theoretical DFT calculations. Thin films of the polymer electropolymerized onto transparent electrode exhibited ambipolar multi-electrochromic behavior including purple, violet-red-khaki-blue colors in both anodic and cathodic regime only between -1.2 and 1.0 V. We further demonstrated that this polymer film has a high contrast ratio (Delta T = 45% at 900 nm), a faster response (0.5 s), high coloration efficiency (254 cm(2) C-1) and retained its performance by 92% even after 5000 cycles. (C) 2014 Elsevier Ltd. All rights reserved.Canakkale Onsekiz Mart University Grants CommissionCanakkale Onsekiz Mart University [2010/99]We gratefully acknowledge the supports from Canakkale Onsekiz Mart University Grants Commission (Project Number: 2010/99)

    A Novel Near-IR Effective Pyrene-Based Donor-Acceptor Electrochrome

    No full text
    In this work, a novel donor-acceptor electrochromic monomer (3HTP), containing a pyrene subunit connected to a quinoxaline acceptor bridge, is synthesized. The corresponding polymer, poly-(3HTP), is directly deposited onto an indium tin oxide (ITO)/glass surface via an electrochemical process. Atomic force microscopy (AFM) images reveal that the electrochemically deposited poly-(3HTP) has a smooth surface due to self-assembly of the planar pyrene subunit. Electrochemical and optical properties are investigated via cyclic voltammetry and UV-vis absorption measurements. The polymer film shows a multielectrochromic feature at both anodic and cathodic regimes. Poly-(3HTP) exhibits a strong near-infrared (NIR) absorption at the oxidized state with an optical contrast of 88% (at 1800 nm), a very fast response time of 0.5 s and fast switching times, and long-term stability. Density functional theory calculations reveal that the molecule has a high planarity, and the NIR absorption arises from a strong intramolecular charge transfer from the polymer backbone to the planar pyrene subunit

    Direct photopatterning of light-activated gold nanoparticles

    No full text
    Photoactivatable gold NPs were patterned via photolithography. In this approach, charge reversal of the ligands on NPs upon UV irradiation induces crosslinking to generate stable NP patterns

    Thermoelectric Enhancement by Compositing Carbon Nanotubes into Iodine-Doped Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]

    No full text
    Free-standing iodine-doped composite samples of poly­[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with carbon nanotubes (NTs) showed thermoelectric (TE) power factors (PFs) up to 33 μW·m<sup>–1</sup>·K<sup>–2</sup> after optimizing multiple factors, including: (1) sample fabrication solvent, (2) doping time, (3) average MEH-PPV molecular weight, (4) NT fraction in the composite, and (5) use of single-wall versus multi-wall nanotubes (SWNT and MWNT, respectively). Composite fabrication from halogenated solvents gave the best TE performance after iodine doping times of 2–4 h; performance drops substantially in ∼20 h doped samples. TE performance dropped after at least 24 h of removal from iodine vapor but was fully restored upon re-exposure to the dopant. Longer-chain MEH-PPV gave not only mechanically stronger films but also higher PFs in doped SWNT composites. MWNT composites gave low PFs, attributed to poor NT dispersion. Scanning electron microscopy showed increasingly extensive network formation as NT fraction increased in the composites; this phase separation provides charge transport pathways that improve thermoelectric PFs. The results support a strategy of producing phase-separated materials having both electrical conduction enhanced regions and Seebeck thermopower retaining regions to maximize organic TE response

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    No full text
    corecore