104 research outputs found

    The Australasian COVID-19 Trial (ASCOT) to assess clinical outcomes in hospitalised patients with SARS-CoV-2 infection (COVID-19) treated with lopinavir/ritonavir and/or hydroxychloroquine compared to standard of care: A structured summary of a study protocol for a randomised controlled trial

    Get PDF
    OBJECTIVES: To determine if lopinavir/ritonavir +/- hydroxychloroquine will reduce the proportion of participants who survive without requiring ventilatory support, 15 days after enrolment, in adult participants with non-critically ill SARS-CoV-2 infection. TRIAL DESIGN: ASCOT is an investigator-initiated, multi-centre, open-label, randomised controlled trial. Participants will have been hospitalised with confirmed COVID-19, and will be randomised 1:1:1:1 to receive lopinavir /ritonavir, hydroxychloroquine, both or neither drug in addition to standard of care management. PARTICIPANTS: Participants will be recruited from >80 hospitals across Australia and New Zealand, representing metropolitan and regional centres in both public and private sectors. Admitted patients will be eligible if aged ā‰„ 18 years, have confirmed SARS-CoV-2 by nucleic acid testing in the past 12 days and are expected to remain an inpatient for at least 48 hours from the time of randomisation. Potentially eligible participants will be excluded if admitted to intensive care or requiring high level respiratory support, are currently receiving study drugs or their use is contraindicated due to allergy, drug interaction or comorbidities (including baseline QTc prolongation of 470ms for women or 480ms for men), or death is anticipated imminently. INTERVENTION AND COMPARATOR: Participants will be randomised 1:1:1:1 to: Group 1: standard of care; Group 2: lopinavir (400mg) / ritonavir (100mg) twice daily for 10 days in tablet form; Group 3: hydroxychloroquine (800mg) 4x200mg administered 12 hours apart on Day 1, followed by 400mg twice a day for 6 days; Group 4: lopinavir /ritonavir plus hydroxychloroquine. MAIN OUTCOMES: Proportion of participants alive and not having required intensive respiratory support (invasive or non-invasive ventilation) at 15 days after enrolment. A range of clinical and virological secondary outcomes will also be evaluated. RANDOMISATION: The randomisation schedule will be generated by an independent statistician. Randomisation will be stratified by site and will be in permuted blocks of variable block size. The randomised sequence allocation will only be accessible to the data management group, and site investigators will have individual participant allocation provided through a web-based trial enrolment platform. BLINDING (MASKING): This is an open-label study, with researchers assessing the laboratory outcomes blinded to treatment allocation. No unblinding procedures relating to potential adverse effects are therefore required. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): We assumed that 5% of participants receiving standard of care would meet the primary outcome, aimed to evaluate whether interventions could lead to a relative risk of 0.5, assuming no interaction between intervention arms. This corresponds to a required sample size of 610 per arm, with a 5% two-sided significance level (alpha) and 80% power. The total sample size therefore is planned to be 2440. TRIAL STATUS: ASCOT protocol version 3, May 5, 2020. Recruitment opened April 4, 2020 and is ongoing, with planned completion of enrolment July 31, 2021. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ( ACTRN12620000445976 ). Prospectively registered April 6, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol

    Hepatitis B genotypes in Aboriginal and Torres Strait Islander Australians: correlation with clinical course and implications for management

    Get PDF
    Background: The prevalence of chronic hepatitis B (CHB) in Aboriginal and Torres Strait Islander Australians in Far North Queensland (FNQ) is greater than twice that of the general Australian population. CHB is common in Torres Strait Islanders diagnosed with hepatocellular carcinoma (HCC) ā€“ and in Aboriginals with HCC living in the Northern Territory ā€“ however, Aboriginals diagnosed with HCC in FNQ very rarely have CHB. TheĀ explanation for this apparent disparity is uncertain. Aims: To determine the HBV genotypes in the FNQ Aboriginal and Torres Strait Islander population and their correlation with clinical phenotype. Methods: We determined the HBV genotype of Aboriginal and Torres Strait Islander Australians living with CHB in FNQ and correlated this with demographic and clinical findings. Results: 134/197 (68%) enrolled individuals had a sufficient viral load for genotyping. All 40 people with HBV/D genotype had Aboriginal heritage, whereas 85/93 (91%) with HBV/C had Torres Strait Islander heritage (P < 0.0001). Individuals with HBV/D were younger than those with HBV/C (median (interquartile range) age: 43 (39ā€“48) vs 53 (42ā€“66) years, P = 0.0002). However, they were less likely to be HBeAg positive (1/40 (3%) vs 23/93 (25%), P = 0.001). All three HCCs developed in Torres Strait Islanders; two-thirds were infected with HBV/C14; genotyping was not possible in the other individual. All 10 diagnoses of cirrhosis occurred in Torres Strait Islanders, 6/10 were infected with HBV/C14, genotyping was not possible in the other four individuals. Conclusions: HBV genotypes in Aboriginal and Torres Strait Islander Australians in FNQ differ markedly, which could explain the significant differences in the clinical phenotype in the two populations and might be used to inform cost-effective CHB care in the region

    The epidemiology and transmission of methicillin-resistant Staphylococcus aureus in the community in Singapore: study protocol for a longitudinal household study.

    Get PDF
    BACKGROUND/AIM: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multidrug-resistant organisms in healthcare settings worldwide, but little is known about MRSA transmission outside of acute healthcare settings especially in Asia. We describe the methods for a prospective longitudinal study of MRSA prevalence and transmission. METHODS: MRSA-colonized individuals were identified from MRSA admission screening at two tertiary hospitals and recruited together with their household contacts. Participants submitted self-collected nasal, axilla and groin (NAG) swabs by mail for MRSA culture at baseline and monthly thereafter for 6Ā months. A comparison group of households of MRSA-negative patients provided swab samples at one time point. In a validation sub-study, separate swabs from each site were collected from randomly selected individuals, to compare MRSA detection rates between swab sites, and between samples collected by participants versus those collected by trained research staff. Information on each participant's demographic information, medical status and medical history, past healthcare facilities usage and contacts, and personal interactions with others were collected using a self-administered questionnaire. DISCUSSION/CONCLUSION: Understanding the dynamics of MRSA persistence and transmission in the community is crucial to devising and evaluating successful MRSA control strategies. Close contact with MRSA colonized patients may to be important for MRSA persistence in the community; evidence from this study on the extent of community MRSA could inform the development of household- or community-based interventions to reduce MRSA colonization of close contacts and subsequent re-introduction of MRSA into healthcare settings. Analysis of longitudinal data using whole-genome sequencing will yield further information regarding MRSA transmission within households, with significant implications for MRSA infection control outside acute hospital settings

    A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells

    Get PDF
    Copyright: Ā© 2018 Bankier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. METHODS: Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. RESULTS: Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. CONCLUSION: Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.Peer reviewe

    Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections

    Get PDF
    Resistance to meticillin and vancomycin in Staphylococcus aureus significantly complicates the management of severe infections like bacteraemia, endocarditis or osteomyelitis. Here, we review the molecular mechanisms and genomic epidemiology of resistance to these agents, with a focus on how genomics has provided insights into the emergence and evolution of major meticillin-resistant S. aureus clones. We also provide insights on the use of bacterial whole-genome sequencing to inform management of S. aureus infections and for control of transmission at the hospital and in the community

    Vancomycin Exposure and Acute Kidney Injury Outcome: A Snapshot From the CAMERA2 Study

    Get PDF
    Among patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteremia from a prospective randomized clinical trial, acute kidney injury (AKI) rates increased with increasing vancomycin exposure, even within the therapeutic range. AKI was independently more common for the (flu)cloxacillin group. Day 2 vancomycin AUCā€…ā‰„470 mgĀ·h/L was significantly associated with AKI, independent of (flu)cloxacillin receipt

    Restricted Sequence Variation in Streptococcus pyogenes Penicillin Binding Proteins

    Get PDF
    A recent clinical report has linked Streptococcus pyogenes Ī²-lactam antibiotic resistance to mutation in the penicillin binding protein (PBP) PBP2x. To determine whether this is an isolated case or reflects a broader prevalence of mutations that might confer reduced Ī²-lactam susceptibility, we investigated the relative frequency of PBP sequence variation within a global database of 9,667 S. pyogenes isolates. We found that mutations in S. pyogenes PBPs (PBP2x, PBP1a, PBP1b, and PBP2a) occur infrequently across this global database, with fewer than 3 amino acid changes differing between >99% of the global population. Only 4 of the 9,667 strains contained mutations near transpeptidase active sites of PBP2x or PBP1a. The reported PBP2x T553K substitution was not identified. These findings are in contrast to those of 2,520 S. pneumococcus sequences where PBP mutations are relatively frequent and are often located in key Ī²-lactam binding pockets. These data, combined with the general lack of penicillin resistance reported in S. pyogenes worldwide, suggests that extensive, unknown constraints restrict S. pyogenes PBP sequence plasticity. Our findings imply that while heavy antibiotic pressure may select for mutations in the PBPs, there is currently no evidence of such mutations becoming fixed in the S. pyogenes population or that mutations are being sequentially acquired in the PBPs.IMPORTANCE Ī²-Lactam antibiotics are the first-line therapeutic option for Streptococcus pyogenes infections. Despite the global high prevalence of S. pyogenes infections and widespread use of Ī²-lactams worldwide, reports of resistance to Ī²-lactam antibiotics, such as penicillin, have been incredibly rare. Recently, Ī²-lactam resistance, as defined by clinical breakpoints, was detected in two clinical S. pyogenes isolates with accompanying mutations in the active site of the penicillin binding protein PBP2x, raising concerns that Ī²-lactam resistance will become more widespread. We screened a global database of S. pyogenes genome sequences to investigate the frequency of PBP mutations, identifying that PBP mutations are uncommon relative to those of Streptococcus pneumoniae These findings support clinical observations that Ī²-lactam resistance is rare in S. pyogenes and suggest that there are considerable constraints on S. pyogenes PBP sequence variation
    • ā€¦
    corecore