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Abstract

Resistance to meticillin and vancomycin in Staphylococcus aureus significantly complicates the management of severe infec-
tions like bacteraemia, endocarditis or osteomyelitis. Here, we review the molecular mechanisms and genomic epidemiology 
of resistance to these agents, with a focus on how genomics has provided insights into the emergence and evolution of major 
meticillin-resistant S. aureus clones. We also provide insights on the use of bacterial whole-genome sequencing to inform man-
agement of S. aureus infections and for control of transmission at the hospital and in the community.

Data Summary
Fig. 1 was generated using genomic data and geographical 
metadata extracted from the Staphopia platform (https://​
staphopia.​emory.​edu/) using the Staphopia R package (https://​
github.​com/​staphopia/​staphopia-​r).

Introduction
The facultative pathogen Staphylococcus aureus is associated 
with asymptomatic carriage in 25 % of adults [1] and with a 
wide spectrum of clinical conditions ranging from skin and 
soft tissue infections, through to invasive infections such 
as pneumonia, bacteraemia, infective endocarditis, septic 
arthritis and osteomyelitis [2]. Invasive S. aureus infections 
still carry a high mortality (for example around 20 and 10 % 
for endocarditis [3, 4] and pneumonia [5], respectively) and 
their management can be very complex, particularly when 
complicated by antimicrobial resistance [6].

The clinical introduction of penicillin in the 1940s dramati-
cally improved the outcome of S. aureus infections (the 

mortality of S. aureus bacteraemia in the pre-antibiotic era 
was as high as 80 %); however, after the introduction of peni-
cillin, resistance spread rapidly, and by 1948 more than the 
half of tested isolates in one centre were resistant to penicillin 
[7]. Interestingly, the rise of penicillin-resistant S. aureus was 
subsequently found to be linked to the spread of a single 
clone, phage type 80/81 [8], the first example of the ‘epidemic 
waves’ that now characterize the molecular epidemiology of 
resistant S. aureus [9]. A similar phenomenon was observed 
after the introduction of penicillinase-resistant penicillins 
(e.g. meticillin, oxacillin) in 1959. Two years later, a report 
described three clinical S. aureus isolates that were resistant 
to this newly introduced anti-staphylococcal antibiotic [10]. 
Recent work has established that meticillin-resistant S. aureus 
(MRSA) was already circulating prior to the introduction of 
meticillin and was likely selected for by penicillin [11]. MRSA 
subsequently disseminated in the hospital environment, and 
then separate epidemic waves occurred in the community. 
By contrast, resistance to the last-line antibiotic vancomycin 
has developed slowly following its introduction in 1958, 
with the first report of vancomycin-intermediate S. aureus 

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by/4.0/deed.ast
https://staphopia.emory.edu/
https://staphopia.emory.edu/
https://github.com/staphopia/staphopia-r
https://github.com/staphopia/staphopia-r
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Fig. 1. Snapshot of the genomic epidemiology of MRSA based on 42 948 publicly available S. aureus genomes (27 120 mec-positive) 
processed through the Staphopia platform (https://staphopia.emory.edu/). The inset shows the explosion of sequenced genomes and 
the constant increase in genetic diversity with 1099 different STs found in Staphopia. Despite this diversity, 70 % of MRSA sequences 
belonged to five STs (ST22, ST8, ST5, ST239 and ST398). It should be noted that publicly available S. aureus genomics do not accurately 
represent S. aureus epidemiology at this stage, due to sequencing and availability bias and lack of metadata in a large proportion of the 
dataset.

(VISA) by Hiramatsu et al. in 1997 [12]. The relatively late 
emergence of vancomycin resistance was probably related to 
limited use of vancomycin until the 1980s, when the surge 
in MRSA infections boosted its use [13]. Resistance to the 
most recently introduced anti-staphylococcal antibiotics 
(daptomycin and linezolid) has also been readily acquired: for 
example, secondary resistance under treatment was described 
in the randomized controlled trial that led to FDA (Food and 
Drug Administration, USA) approval of daptomycin [14]; and 
linezolid resistance, albeit rare, has been reported in series of 
isolates [15].

In this mini-review, we provide an overview of the major 
genomic-based insights into the two major clinically relevant 
mechanisms of staphylococcal resistance (resistance to meti-
cillin and vancomycin), and highlight the contribution of 
genomic epidemiology to the understanding of the establish-
ment and spread of resistant clones (especially MRSA). Finally, 
we provide an outline for the future use of genomics beyond 
resistance research and epidemiology, towards improved indi-
vidual patient management of invasive S. aureus infections, by 
prediction of antibiotic response, persistence and virulence.

Genomic insights into MRSA
Genetic basis of meticillin resistance
S. aureus acquires resistance to anti-staphylococcal penicil-
lins through expression of an additional penicillin-binding 
protein (PBP) (PBP2a) [16]. Unlike other PBPs, PBP2a is 
resistant to the inhibitory effects of all β-lactams (with the 
exception of ceftaroline and ceftobiprole) and is almost 
always encoded by the accessory gene mecA [17]. The expres-
sion of mecA is inducible and controlled by a signal-inducer 
protein and a repressor located within the mecA operon [17]. 
Accordingly, most MRSA strains express PBP2a at low level, 

but harbour highly resistant subpopulations (heteroresist-
ance) [18]. High-level resistance can be expressed in special 
circumstances. An example is the stringent response, i.e. 
the intracellular accumulation of the second messenger 
(p)ppGpp secondary to nutritional stress [19, 20]. In vitro 
studies identified genes involved in the stringent response 
(such as relA) as ‘auxiliary genes’ that alter the expression of 
oxacillin resistance, along with several other determinants 

Impact Statement

Meticillin- and vancomycin-resistant Staphylococcus 
aureus have been included by the World Health Organi-
zation in the global priority list of antibiotic-resistant 
bacteria, given the high mortality and morbidity asso-
ciated with invasive S. aureus infections such as endo-
carditis and osteomyelitis, and the suboptimal outcome 
of treatment when anti-staphylococcal β-lactams are 
not available. Whole-genome sequencing (WGS) studies 
have not only highlighted how meticillin-resistant S. 
aureus spreads in the community and at the hospital, 
but also shown how use of antibiotics and biocides in the 
community initiates and amplifies the establishment of 
drug-resistant S. aureus. Moreover, emerging resistance 
to last-line antibiotics like vancomycin, daptomycin and 
linezolid can now be dissected at the molecular level by 
genomic studies. Through increased understanding of 
the genomic basis of resistance and emerging work on 
S. aureus virulence and persistence, there is likely to be a 
growing role of WGS in the direct clinical management of 
S. aureus infections.

https://staphopia.emory.edu/
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including the fem (factors essential for meticillin resistance) 
genes [21, 22].

Recently, alternative mec alleles have been described. For 
example, mecC shares 70 % nucleotide identity with mecA and 
is typically found in livestock-associated MRSA (LA-MRSA) 
[23]. Based on two reviews of epidemiological studies [24, 25], 
this mec variant appears to be infrequent and restricted to 
Europe (with one single case report from Australia [26]). 
Interestingly, mecC-MRSA appears to have a low oxacillin 
minimum inhibitory concentration (MIC) due to the 
distinctive characteristics of its PBP2a-homologue (PBP2c), 
including higher binding affinity for oxacillin than cefoxitin 
[27], and susceptibility to penicillin-β-lactam inhibitor 
combinations [28]. Accordingly, mecC-MRSA was success-
fully treated with β-lactams in an experimental endocarditis 
model [29]. Rarer mec homologues are also reported in other 
staphylococci or related species, such as mecA1 (Staphylo-
coccus sciuri), mecA2 (Staphylococcus vitulinus) or mecB and 
mecD (Macrococcus spp.) [30–32]. Based on genomic studies, 
it is hypothesized that mecA was acquired several years prior 
to the first clinical detection of MRSA in 1961. Harkins et al. 
applied a Bayesian phylogenetic inference to a collection of 
early MRSA isolates (1960–1980) and concluded that meti-
cillin resistance emerged in the mid-1940s, suggesting that 
the introduction of penicillin may have contributed to the 
selective pressure that lead to the advent of MRSA [19].

Horizontal transfer of mecA is made possible by carriage on 
a specific mobile genetic element (MGE) ranging between 23 
and 68 kb in size, the staphylococcal cassette chromosome 
(SCC) [33]. The association of mecA with the SCC (termed 
the SCCmec) not only is important for mecA acquisition 
or transfer, but also is a key factor mediating antimicrobial 
co-resistance, since genes conferring resistance to non-β-
lactam antibiotics can be co-located in the same locus [34–36]. 
To date, 13 variants of SCCmec have been described [37], but 
with the increasing number of sequenced strains, new vari-
ants are likely to be discovered in the future. Beyond SCCmec, 
other MGEs are critical for acquisition and dissemination of 
resistance to antibiotics and biocides (particularly plasmids 
and transposons, see the review by Firth and colleagues [38]) 
and virulence determinants (particularly bacteriophages, see 
the review by Xia and Wolz [39]).

The conserved structure of SCCmec and mecA has facilitated 
the molecular detection of meticillin resistance; molecular 
point-of-care tests have streamlined the rapid detection of 
MRSA from clinical samples. However, correlation between 
the presence of mecA or mecC and phenotypic resistance 
to oxacillin is not absolute – approximately 3 % of S. aureus 
strains harbouring mecA are phenotypically susceptible to 
oxacillin [40, 41]. As mentioned above, this phenomenon 
has been previously explained by heterogeneous synthesis 
of PBP2a [42], but a genomic study provided an interesting 
alternative mechanism. The authors investigated two clinical 
isolates of mecA-positive meticillin-susceptible S. aureus 
(MSSA) and demonstrated that mecA expression was 
suppressed by disruption of the gene through insertion of 

IS1181 in one case and a mecA frameshift mutation in the 
other [41]. β-Lactam sensitivity in MRSA has been investi-
gated in a recently published study by Harrison et al., where 
they identified a subset of MRSA strains that were susceptible 
to penicillin/clavulanic acid combinations. The genomic basis 
of this phenomenon was found to be the association of muta-
tions both in the promoter and coding sequence of mecA [43].

Conversely, oxacillin resistance can be mediated by other 
mechanisms than PBP2a production. Such mecA- (and mecC)-
negative, oxacillin-resistant strains [borderline oxacillin-
resistant S. aureus (BORSA)] are increasingly recognized and 
may be associated with failure of oxacillin clinical therapy, 
typically in complex, deep-seated infections [44, 45]. While 
previous work has investigated β-lactamase hyperproduction 
or PBP mutations [46], recent genomic studies of BORSA 
isolates have linked this phenotype to mutations in the regula-
tory gene gdpP [47, 48], which degrades the second messenger 
c-di-AMP. gdpP mutations have been linked to changes in 
cell-wall metabolism and increased resistance to antibiotics 
targeting the cell wall like β-lactams and vancomycin [49].

Genomic epidemiology of MRSA
The genomic epidemiology of MRSA is multifaceted. MRSA 
is typically clonal, with epidemic waves of infections charac-
terized by the temporal rise and decline of clones [50, 51]. 
Parallel to these chronological changes, geographical segre-
gation can be observed, with some adaptation to specific 
environments, including health-care facilities, community 
settings and animal populations. These broad groupings 
form the basis for the often used classifications of health-care-
associated MRSA (HA-MRSA), community-associated MRSA 
(CA-MRSA) and livestock-associated MRSA (LA-MRSA). 
Previously, molecular epidemiology using lower-resolution 
approaches, such as pulsed-field gel electrophoresis (PFGE), 
multilocus sequence typing (MLST) or spa typing, helped 
delineate dominant MRSA clones and track their emergence, 
expansion and spread [52]; however, over the past 10 years, 
whole-genome sequencing (WGS)-based studies have defined 
the complex epidemiology of MRSA, from tracking global 
dissemination of successful clones, to dissecting chains of 
transmission in hospitals and the community, and between 
livestock and humans.

Harris et al. performed the first study that applied large-
scale bacterial WGS to explore global dissemination of the 
HA-MRSA clone sequence type (ST)239 [53]. While the core-
genome phylogeny was consistent with PFGE and spa typing, 
genomic data provided detailed insights into the phylogeo-
graphical structure of the ST239 lineage, the emergence of 
antibiotic-resistance mutations and transmission within a 
health-care facility. The impact of genomics on the investi-
gation and control of hospital-associated MRSA outbreaks 
has also been demonstrated in subsequent papers [54–56], 
while others have analysed MRSA transmission networks in 
the community setting [57] or described the emergence of 
LA-MRSA and the complex interplay associated with trans-
mission from humans to farm animals and vice versa [58, 59]. 
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Table 1 provides a selection of the major genomic epidemio-
logical studies associated with MRSA and their key findings. 
Given the large number of studies that have applied WGS to 
address MRSA epidemiology, we have selected studies based 
on (i) their novelty at the time they were published, and (ii) 
the range of MRSA genomic epidemiology (e.g. global or 
local transmission, adaptive evolution, source attribution in 
LA-MRSA).

More recent S. aureus genomic epidemiological studies have 
evolved in two complementary directions: (i) expanding the 
breadth of the analysis by providing local, national or inter-
national surveillance frameworks for MRSA (and S. aureus in 
general); or (ii) performing in-depth investigations of single 
clones or lineages, and exploring the interplay between adap-
tive evolution and antibiotic pressure. For example, Aanansen 
et al. performed a population genomic study of 308 S. aureus 
isolates across 21 European countries. Their data provided a 
‘snapshot’ view of the genetic diversity of S. aureus across a 
continent, and allowed the investigation of evolution within 
single clones and intercontinental transmission, as well as 
identification of both MSSA and MRSA ‘high-risk clones’ 
(e.g. CC22, CC30) based on speed of expansion as assessed 
from phylogenomics, phylogeographical structure and the 
presence of key resistance or virulence genes. Their study 
also showed that the population structures of MRSA and 
MSSA are fundamentally different, with the former being 
more clonal and geographically clustered [60]. Building on 
a similar approach, Reuter et al. described the population 
structure of over 1000 invasive MRSA isolates from the UK 
and Ireland [61]. An important finding of their study was 
strong phylogeographical clustering around hospital referral 
networks, highlighting the potential for the use of WGS in 
epidemiological surveillance and early identification of new 
hospital outbreaks [61, 62]. Two recent studies expanded the 
framework of surveillance of MRSA transmission: Price et 
al. showed that genomics can be applied to interrogate the 
complex transmission interplay between patients, health-care 
workers and the environment in the health-care setting [63], 
while a study by Coll et al. integrated genomic data with 
epidemiological data retrieved from various sources (hospital 
admissions, postcodes, general practice attendance) to recon-
struct MRSA transmission networks both in the hospital and 
the community [64].

With over 40 000 S. aureus genomes now publicly available, 
large-scale genomic surveillance is now possible [65, 66]. 
Fig. 1 demonstrates the global distribution of MRSA clones 
based on publicly available S. aureus genomes processed 
through the Staphopia platform [65]. Despite the great 
interest of this large and ever-growing public dataset of S. 
aureus sequences, it should be noted that these data are not 
necessarily representative of the actual S. aureus epidemiology 
(sources of bias include the larger availability of sequencing in 
a small group of developed countries, increased sequencing 
of MRSA for public-health reasons and lack of metadata 
including country of collection for a large proportion of the 
isolates). Other available genomic platforms for S. aureus (and 
other bacteria) offer access to publicly available genomes and 

allow comparison of sequences uploaded by the user through 
analysis pipelines, e.g. patric (https://www.​patricbrc.​org), 
National Center for Biotechnology Information (NCBI) 
Pathogen detection (https://www.​ncbi.​nlm.​nih.​gov/​patho-
gens/; however, S. aureus is not included yet) and Pathogen-
watch (https://​pathogen.​watch). These repositories and new 
computational approaches allow high-throughput analysis of 
stored sequence data for both rapid and efficient genomic 
surveillance [67] and discovery of genetic determinants of 
resistance or pathogenesis [68].

In-depth genomic studies of specific MRSA lineages
An early example of an in-depth, clone-specific approach is 
reported in a study by Holden et al., who applied Bayesian 
phylogenetics methods to dissect the evolutionary history 
of the hospital-associated ST22 clone, the dominant MRSA 
clone in the UK. The analysis reconstructed the acquisi-
tion of important antibiotic-resistance determinants (mecA 
and resistance-associated mutations in the gyrA and grlA 
genes) and showed that rapid expansion and dissemination 
of sublineage ST22-A2 was likely promoted by acquisition 
of fluoroquinolone resistance [69]. Other authors have 
combined population genomics and phenotypic studies to 
dissect adaptive micro-evolution of MRSA both in the hospital 
[70] and community environment [71–73]. For example, two 
genomics studies of ST93, a community-acquired MRSA 
clone in Australia, have revealed how this lineage likely arose 
in a remote area in North-West Australia and subsequently 
disseminated across the continent and overseas [71, 73]. One 
study also showed that this high-virulence clone changed its 
phenotype towards reduced virulence (e.g. expression of 
alpha-toxin) and increased susceptibility to oxacillin [71], 
possibly indicating adaptive evolution to the health-care envi-
ronment, as previously shown in other clones such as CC30 
[74]. Another Australian study explored adaptive evolution 
of the hospital-associated ST239 clone. Phylogenetic anal-
ysis showed that the epidemics had been enhanced by the 
introduction of a previously unrecognized sublineage from 
Asia. Both the Australian and the Asian sublineage of ST239 
exhibited patterns of convergent evolution, namely decreased 
virulence and increased resistance to antibiotics (including 
vancomycin) – both characteristics of hospital adaptation. 
The transmission potential of ST239 was also highlighted in 
a study performed in an hospital in Thailand [75]. Further, in 
a worldwide study of the CA-MRSA clone ST59 (dominant 
in East Asia), the authors applied a Bayesian phylogenetic 
method (‘Markov jumps’) to identify ‘source’ countries (USA, 
Taiwan) and ‘sink’ countries (Australia, the UK, the Nether-
lands) of the ST59 epidemic [76]. Collectively, these studies 
have provided clear examples of the utility of population 
genomics (complemented with relevant phenotypic testing) 
in understanding the evolutionary mechanisms that underpin 
the success of MRSA clones.

Co-resistance in MRSA
An area of ongoing interest is the role of co-resistance to 
non-β-lactam antibiotics in the spread and expansion of 

https://www.patricbrc.org
https://www.ncbi.nlm.nih.gov/pathogens/
https://www.ncbi.nlm.nih.gov/pathogens/
https://pathogen.watch
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MRSA clones [77]. Co-resistance is of both epidemiological 
and clinical relevance, since it has been shown that use of 
selected antibiotics (e.g. fluoroquinolones) may drive the 
MRSA epidemic [78]; thus, offering potential targets of 
preventive interventions through antibiotic stewardship in 
human health or in agriculture [79]. This is not only true 
for systemic antibiotics, but also for topical antibiotics and 
biocides [80].

From a genomic perspective, co-resistance can arise via four 
different mechanisms: (i) the same genetic determinant (gene 
or mutation) can confer resistance to multiple antibiotics (e.g. 
the pleiomorphic effects of rpoB mutations, which include 
decreased susceptibility to vancomycin and daptomycin [66]); 
(ii) compensatory mutations that counterbalance the fitness 
cost associated with resistance to one antibiotic can alter 
susceptibility to another drug (e.g. increased β-lactam suscep-
tibility in VISA, see below [81]); (iii) the genetic resistance 
determinants are co-located on the same mobile element (e.g. 
within the SCCmec) [36]; or (iv) the resistance determinants 
are co-located within the same strain (e.g. fluoroquinolone 
resistance in MRSA).

Co-location on the same MGE is important, because it is asso-
ciated with a risk of horizontal transmission of both genetic 
determinants. In MRSA, it is enabled by the plasticity of the 
SCCmec element that can host several genes associated with 
resistance to antibiotics or heavy metals [82]. For example, 
the erythromycin-resistance gene erm(A) is found on trans-
poson Tn554, which is in turn nested within type II, III and 
VIII SCCmec elements [33], while the tetracycline-resistance 
plasmid pT181 is integrated in type III SCCmec. Similarly, 
the aminoglycoside-resistance gene aacA-aphD is carried on 
transposon Tn4001, which can in turn be found not only on 
several multi-resistance plasmids, but also on some SCCmec 
elements [83]. An illustrative example of the effect of resist-
ance co-location on MRSA epidemiology is provided by the 
rapid emergence of fusidic acid-resistant MRSA and MSSA 
in New Zealand that was likely fuelled by the unrestricted use 
of topical fusidic acid. Genomic studies showed that fusidic 
acid resistance was restricted to two dominant MRSA clones 
(ST5 and ST1) and one MSSA clone (ST1) that had acquired 
the fusidic acid-resistance determinant, fusC. Crucially, the 
fusC operon was exclusively located in SCC elements, in both 
MSSA and MRSA [34, 84]. Important MRSA co-resistance 
determinants located outside SCCmec are the quinolone-
resistance genes gyrAB and grlAB, encoding the DNA gyrase 
and DNA topoisomerase, respectively [85]. Population 
genomics studies show that a single acquisition of quinolone 
resistance in the 1990s drove clonal expansion in both ST8 
(USA300) [57] and the ST22 lineage (EMRSA-15) [69].

Tolerance to biocides and resistance to topical antibiotics can 
also be mediated by genes located on plasmids. The qacA gene 
encodes an efflux pump that is associated with tolerance to 
monovalent and divalent cations such as chlorhexidine, a 
widely used disinfectant in the hospital setting. It is gener-
ally carried on pSK1 family plasmids, often in combination 
with other resistance genes such as the β-lactamase blaZ. 

A recent adaptive evolution study has shown a progressive 
decrease of chlorhexidine sensitivity among ST239 isolates. 
This phenotypic change was associated with a complex rear-
rangement of the pSK1 plasmids [86]. Mupirocin resistance is 
linked to mutations in the chromosomal gene ileRS (low-level 
resistance) or the plasmid-located gene mupA [87]. A recent 
genomic study showed that mutations in the essential gene 
ileS appear to have pleiotropic effects [88], highlighting the 
complexity of antibiotic resistance in S. aureus.

Using genomics to explore virulence in MRSA
The complexity of virulence has been recently highlighted 
[89]. It has been very difficult to identify single genomic deter-
minants of clinical outcome in S. aureus infections [90], with 
the exception of some toxin-mediated syndromes [91, 92]. 
Nevertheless, it is possible to classify genetic determinants 
of virulence based on broad phenotypic characterization 
in experimental models (e.g. adhesion, toxin production, 
immune evasion and gene regulation) and their genetic 
context (i.e. core genome or accessory genome). Although a 
detailed description of virulence determinants is beyond the 
scope of this review, we will highlight some recent insights 
into S. aureus virulence that have been specifically provided 
by genomic studies.

A striking feature of CA-MRSA clones (such as ST8 and 
ST93) has been increased virulence in animal models and 
clinical examples of severe diseases (such as necrotizing skin 
or lung infections) [93, 94]. This has also been demonstrated 
in vitro as increased cytotoxicity against human lymphocytes 
or macrophages [95]. While the genetic basis of increased 
virulence remains elusive, these clones were characterized 
by the presence of the Panton-Valentine leukocidin (PVL) 
toxin encoded by two genes lukS and lukF, located on a 
bacteriophage [96]. There remains controversy around the 
true clinical relevance of PVL [97]; however, a recent genome-
wide association study (GWAS) showed that it was strongly 
associated with S. aureus pyomyositis among children in 
Cambodia [98]. Further, it has been shown that cell toxicity 
resulting from exotoxin production in MRSA might be related 
to regulatory mechanisms rather that a single gene or locus. 
For example, there is an inverse relationship between PBP2a 
expression and toxicity; generally, classic CA-MRSA clones 
such as ST8 and ST93 have a lower oxacillin MIC and higher 
toxicity [99].

Other virulence determinants identified in genomic studies 
are the arginine catabolic mobile element (ACME), a large 
genetic segment possibly enhancing colonization in ST8 
MRSA [100] and sasX, carried on a prophage in ST239 MRSA 
[101]. It is expected that genomic studies will continue to 
identify previously unrecognized virulence determinants. 
For example, a recent analysis of 92 USA300 isolates from 
an outbreak in a New York community identified mutations 
in the pyrimidine nucleotide biosynthetic operon regulator 
pyrR that were associated with enhanced fitness in vitro 
and enhanced colonization and transmission in a mouse 
model [72]. Furthermore, genomic analysis revealed that 
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the acquisition of a bacteriophage was associated with larger 
skin abscesses in an animal model, emphasizing the impact 
of structural variants and MGEs on clone success and staphy-
lococcal pathogenesis [72].

Genomic insights into vancomycin-
resistant S. aureus
The first report of vancomycin resistance was published in 
1997 [12], 39 years after vancomycin was first introduced 
[102]. The authors isolated an MRSA strain with a vanco-
mycin MIC of 8 mg l−1 from a patient with a persistent sternal 
wound infection, who had been exposed to vancomycin for 
several weeks [12]. From a molecular perspective, vanco-
mycin resistance in S. aureus can arise through acquisition 
of the vancomycin-resistance determinant vanA, or more 
commonly via an array of vanA-independent mechanisms, 
mostly mutations in genes involved in cell-wall biosynthesis 
[103]. vanA-mediated resistance is associated with high-level 
resistance (VRSA, with a vancomycin MIC of 16 mg l−1 and 
higher) and is due to acquisition of the vanA operon, located 
on transposon Tn1546 [104], more commonly associated 
with vancomycin resistance in enterococci [105]. It was first 
described in 2002 in a patient with end-stage renal failure 
and diabetic foot infection [106]. Subsequent molecular 
studies demonstrated that the VRSA isolate carried a conju-
gative plasmid that had acquired Tn1546 from a co-infecting 
vancomycin-resistant Enterococcus faecalis [104]. While this 
report and previous experimental work [107] raised concerns 
of dissemination of high-level vancomycin resistance, VRSA 
remains very rare, with a total of only 14 cases reported in 
the USA [108], and a few reports from Iran [109] and India 
[110]. Although most VRSA strains to date belong to clonal 
complex 5, genomic analyses of 12 VRSA strains from the 
USA showed that they were genetically distant, with the most 
recent common ancestor around 1960 and likely independent 
acquisition of the plasmid-born vanA operon in each isolate 
[111].

Since its first description in 1997, several studies have investi-
gated the complex background of vanA-independent vanco-
mycin resistance. Phenotypically, these strains have low-level 
vancomycin resistance (VISA, vancomycin MIC 4–8 mg l−1) or 
may not be resistant when tested with conventional methods, 
yet harbour vancomycin heteroresistance (hVISA) [103]. 
They are also characterized by a thickened cell wall [112], 
slower growth and increased autolysis [113]. The molecular 
basis of these changes is complex and polygenic (extensive 
reviews have been published by Howden et al. [114] and 
McGuinness et al. [108]). Most mutations involve regulators 
of cell-wall biosynthesis, such as the two-component regula-
tors vraRS [115], graRS [116] and walKR [117]. However, 
mutations in the rpoB gene (with or without co-resistance to 
rifampicin) [118] and in the PP2C phosphatase prpC [119] 
can also be associated with the VISA phenotype. Interestingly, 
in one case, decreased vancomycin susceptibility was linked 
to insertion of the transposon IS256 upstream of walKR 
[120], possibly altering its expression [121]. To date, two 

GWASs have assessed putative mutations associated with the 
VISA phenotype, both on ST239 isolates. The first study of 
123 isolates found an association with a SNP in walkR [70], 
while the second (75 isolates) pointed to the H481Y/L/N rpoB 
mutation [122]. Further, a study using a machine-learning 
approach found that the VISA phenotype could be predicted 
with 84 % accuracy [123]. Although reduced vancomycin 
susceptibility can be found in any genetic background [124], 
ST239 strains tend to have a higher vancomycin MIC [125]. 
ST5 seems also to be more often associated with VISA [126].

Despite different genetic resistance mechanisms and pheno-
types, VRSA and VISA share common features that distin-
guish them from MRSA. Unlike MRSA, VRSA and VISA 
are generally polyclonal, and no significant dissemination 
has been documented. To date, vancomycin resistance has 
occurred secondarily, during treatment for complicated S. 
aureus infections. As such, prevention of this resistance is 
likely best achieved through optimising the management 
of complex MRSA infections (including appropriate source 
control) and implementing antibiotic stewardship, rather 
than through infection control. However, there remains an 
omnipresent risk that vancomycin resistance could dissemi-
nate more effectively, especially with widespread transfer and 
expansion of a vanA-harbouring clone [127].

Unfortunately, resistance to newer anti-staphylococcal anti-
biotics is also emerging. Daptomycin has been proposed 
as a possible alternative to vancomycin for the treatment 
of invasive MRSA infections (with the exception of pneu-
monia) [128]; however, VISA/hVISA are often co-resistant 
to daptomycin [129] and secondary resistance can develop 
in vivo, especially in the case of deep-seated infections and 
poor source control [130]. Genetically, the main mechanism 
of daptomycin resistance is considered to be gain-of-function 
mutations in mprF, which encodes for a lysyltransferase 
producing lysylphosphatidylglycerol, a positively charged cell-
membrane lipid that mediates resistance to host antimicrobial 
peptides [131]. It is hypothesized that mutations associated 
with daptomycin resistance increase cell-membrane positivity 
and, hence, impair binding of daptomycin, which is positively 
charged [132]. Similar to the VISA phenotype, comparative 
genomics studies of closely related isolates (either from cases 
of daptomycin treatment failure or from in vitro exposure 
experiments) have been instrumental in identifying further 
genetic determinants of daptomycin resistance. Strikingly, 
some of these genes are the same as those implicated in the 
VISA phenotype, such as walKR [133], rpoB [118] or prpC 
[119]. Furthermore, both daptomycin and vancomycin resist-
ance are associated with the ‘see-saw’ effect, where increased 
resistance to glycopeptides and lipopeptides leads to reduced 
resistance to β-lactams [81]. The molecular basis of this 
phenomenon is complex and only partially investigated; for 
example, some studies have shown compensatory changes 
in the mecA gene [134] and reduced mecA expression [135].

Linezolid is a potential alternative anti-MRSA antibiotic that 
is not known to be affected by co-resistance to vancomycin. 
Resistance to linezolid can arise through to point mutations 
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in 23S ribosomal RNA [136] and the ribosomal proteins L3/
L4 [137]; however, it can also be acquired through transfer of 
the accessory gene cfr, which produces a 23S rRNA methylase 
[138]. This gene is often carried by a plasmid [139] and a 
small multi-clonal outbreak of cfr-positive MRSA has been 
described in a Spanish hospital [140]. Ceftaroline, a next-
generation cephalosporin with specific activity against 
PBP2a, might be used either as salvage therapy or as part 
of combination treatment for invasive MRSA infections 
[141]. However, ceftaroline resistance has been described in 
several MRSA lineages, both at baseline and on treatment 
[142], mainly through point mutations in mecA or in pbp4 
[143, 144]. Interestingly, mecA polymorphisms associated 
with ceftaroline resistance were found in a Korean study, 
despite the fact that ceftaroline had not yet been used in 
the country [145]. In a study of 421 strains, 17 % were non-
susceptible to ceftaroline (>1 mg l−1), with a higher proportion 
in ST239 MRSA [146].

Applying genomics to the management 
of invasive S. aureus infections
In addition to population-level studies, genomics has been 
increasingly used in the clinical microbiology laboratory 
at the patient level, mainly in the prediction of phenotypic 
resistance from genotypic data. Several translational studies 
have shown that genomic prediction of antibiotic resistance 
is highly accurate in the case of S. aureus [147, 148]. The 
main issue with this approach is related to yet unknown 
resistance mechanisms [149]; however, it is likely that 
prediction accuracy will further improve as databases of 
genetic determinants of resistance are constantly updated, 
provided that careful genotype–phenotype association 
studies are also performed.

From a clinical perspective, one area where genomics offers 
considerable potential is through the use of WGS data to 
predict clinical outcomes and inform patient manage-
ment, beyond considerations of antimicrobial resistance 
[90]. Previous molecular studies using multiple PCR or 
DNA arrays have suggested an association between certain 
clonal types and clinical manifestations or outcomes of S. 
aureus bacteraemia; however, with a few exceptions [150], 
no consistent link was demonstrated between the pres-
ence/absence of specific genes or mutations and clinical 
outcomes. More recently, Recker et al. used WGS data 
and applied a machine-learning algorithm to a S. aureus 
bacteraemia cohort in the UK to map associations between 
bacterial genetics, phenotypes potentially associated with 
virulence (cytotoxicity and biofilm formation) and clinical 
outcome [151]. The main finding of the study was that 
bacterial phenotype and genotype contributed to infection 
outcome; however, the effect appeared to be clone-specific, 
highlighting the complexity of outcome predictions in this 
setting. Another study from Denmark was not able to deter-
mine bacterial genomic predictors of infective endocarditis 
in S. aureus bacteraemia, despite using multiple genomic 
approaches [152]. Prediction might be more straightforward 

for rarer, specific clinical S. aureus syndromes. For example, 
Young et al. successfully applied GWAS to further highlight 
the role of PVL in the pathogenesis of pyomyositis [98]. 
However, to provide findings that can be implemented in 
clinical management, larger studies of genetic determinants 
of S. aureus infection outcomes are needed. Crucially, 
these studies will require additional validation either in 
independent cohorts or through functional tests [153], as 
well as integration of clinical covariables and, ideally, host 
genomics [154].

An alternative approach to uncover bacterial genetic deter-
minants of disease is to investigate bacterial host adaptation 
through within-host evolution studies [155]. The study of 
genetically closely related isolates from the same patient offers 
a unique opportunity to identify new bacterial molecular 
markers of resistance, virulence or persistence without the 
need for large patient cohorts and without the analytical 
problems associated with GWAS approaches. These studies 
have played an essential part in establishing the genetic factors 
underlying VISA [114], but may also offer insights into the 
pathogenesis of invasive S. aureus infections [120, 156]. 
Furthermore, comparative genomics of multiple patient 
isolates could help manage treatment failure by a reliable 
differentiation between true relapse and reinfection, or by 
the identification of de novo resistance mutations, especially 
if novel techniques are used that allow accurate detection of 
low-frequency populations [157].

Conclusion and future directions
S. aureus remains a considerable clinical burden, in both 
hospital and community settings. This is aggravated by 
resistance to key anti-staphylococcal antibiotics like fluclox-
acillin and vancomycin. Molecular and genomic studies have 
provided invaluable insights into how resistance arises. For 
MRSA, they have demonstrated how MGEs have facilitated 
the selection and dissemination of distinct clones in hospital 
wards, community networks and at a global scale. Further, 
genomic datasets are now available, allowing the predic-
tion of resistance to common antimicrobials, with ongoing 
work trying to accurately predict genotypic resistance to 
last-line antibiotics such as vancomycin, daptomycin, 
linezolid and ceftaroline. Future studies should also inves-
tigate whether bacterial genomics can be used to predict 
antibiotic synergism and response to combination therapy 
(e.g. vancomycin/daptomycin combination with β-lactams 
[158]). However, this large amount of genomic information 
can only be exploited if high-quality metadata are collected 
and (where possible) made publicly available. For example, 
phenotypic antibiotic susceptibility should be submitted 
along with other metadata (an approach encouraged by the 
NCBI, as described at: https://www.​ncbi.​nlm.​nih.​gov/​biosa-
mple/​docs/​antibiogram/). Even more importantly, clinical 
phenotypes (including relevant outcomes and relevant 
treatment and confounder factors) should be mapped from 
carefully designed, prospective cohorts [90]. This integrative 
approach combining publicly available databases, curated 

https://www.ncbi.nlm.nih.gov/biosample/docs/antibiogram/
https://www.ncbi.nlm.nih.gov/biosample/docs/antibiogram/
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microbiological and clinical phenotypes and powerful 
computational tools will pave the way for bacterial genomics 
to move from population studies to patient management.
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