13,857 research outputs found

    Computer model of catalytic combustion/Stirling engine heater head

    Get PDF
    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers

    D-Branes in Field Theory

    Full text link
    Certain gauge theories in four dimensions are known to admit semi-classical D-brane solitons. These are domain walls on which vortex flux tubes may end. The purpose of this paper is to develop an open-string description of these D-branes. The dynamics of the domain walls is shown to be governed by a Chern-Simons-Higgs theory which, at the quantum level, captures the classical "closed string" scattering of domain wall solitons.Comment: 23 Pages, 3 figures. v2: reference adde

    On the stability of quantum holonomic gates

    Full text link
    We provide a unified geometrical description for analyzing the stability of holonomic quantum gates in the presence of imprecise driving controls (parametric noise). We consider the situation in which these fluctuations do not affect the adiabatic evolution but can reduce the logical gate performance. Using the intrinsic geometric properties of the holonomic gates, we show under which conditions on noise's correlation time and strength, the fluctuations in the driving field cancel out. In this way, we provide theoretical support to previous numerical simulations. We also briefly comment on the error due to the mismatch between real and nominal time of the period of the driving fields and show that it can be reduced by suitably increasing the adiabatic time.Comment: 7 page

    Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke

    Get PDF
    Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    TECHNICAL CHARACTERISTICS OF ELITE MALE AND FEMALE DISCUS THROWERS

    Get PDF
    This study identified technical characteristics of discus throwing techniques used by elite male and female discus throwers. Fifty-seven male and fifty-two female elite discus throwers were divided into four groups based on their longest official distances. Flight distance was the major determinant of the official distance for male athletes. Flight distance and aerodynamic distance contribution to the official distance for females. Horizontal and vertical velocities of the discus at release were major determinants of the official distance for both all athletes. Increases in the horizontal and vertical velocities of the discus during different phases had different effects on the official distance for all athletes. Results provide information for technical training of discus techniques and basis for future discus throwing studies

    Magnetic Catalysis in AdS4

    Full text link
    We study the formation of fermion condensates in Anti de Sitter space. In particular, we describe a novel version of magnetic catalysis that arises for fermions in asymptotically AdS4 geometries which cap off in the infra-red with a hard wall. We show that the presence of a magnetic field induces a fermion condensate in the bulk that spontaneously breaks CP symmetry. From the perspective of the dual boundary theory, this corresponds to a strongly coupled version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected, extra comments added in appendix. v3: extra comments about fermion modes in a hard wall background. v4: A final factor of

    Geometric Phase: a Diagnostic Tool for Entanglement

    Full text link
    Using a kinematic approach we show that the non-adiabatic, non-cyclic, geometric phase corresponding to the radiation emitted by a three level cascade system provides a sensitive diagnostic tool for determining the entanglement properties of the two modes of radiation. The nonunitary, noncyclic path in the state space may be realized through the same control parameters which control the purity/mixedness and entanglement. We show analytically that the geometric phase is related to concurrence in certain region of the parameter space. We further show that the rate of change of the geometric phase reveals its resilience to fluctuations only for pure Bell type states. Lastly, the derivative of the geometric phase carries information on both purity/mixedness and entanglement/separability.Comment: 13 pages 6 figure

    Extended SL(2,R)/U(1) characters, or modular properties of a simple non-rational conformal field theory

    Full text link
    We define extended SL(2,R)/U(1) characters which include a sum over winding sectors. By embedding these characters into similarly extended characters of N=2 algebras, we show that they have nice modular transformation properties. We calculate the modular matrices of this simple but non-trivial non-rational conformal field theory explicitly . As a result, we show that discrete SL(2,R) representations mix with continuous SL(2,R) representations under modular transformations in the coset conformal field theory. We comment upon the significance of our results for a general theory of non-rational conformal field theories.Comment: JHEP style, 25 pages, 2 figures, v2: minor corrections, reference added, version to appear in JHE
    corecore