61 research outputs found

    Detect Depression from Social Networks with Sentiment Knowledge Sharing

    Full text link
    Social network plays an important role in propagating people's viewpoints, emotions, thoughts, and fears. Notably, following lockdown periods during the COVID-19 pandemic, the issue of depression has garnered increasing attention, with a significant portion of individuals resorting to social networks as an outlet for expressing emotions. Using deep learning techniques to discern potential signs of depression from social network messages facilitates the early identification of mental health conditions. Current efforts in detecting depression through social networks typically rely solely on analyzing the textual content, overlooking other potential information. In this work, we conduct a thorough investigation that unveils a strong correlation between depression and negative emotional states. The integration of such associations as external knowledge can provide valuable insights for detecting depression. Accordingly, we propose a multi-task training framework, DeSK, which utilizes shared sentiment knowledge to enhance the efficacy of depression detection. Experiments conducted on both Chinese and English datasets demonstrate the cross-lingual effectiveness of DeSK

    Method for Detecting the Inside of Coke Drum Using Acoustic Signals

    Get PDF
    A distance and acoustic intensity reverberation (DAIR) physical model is developed that can be successfully applied to the signal processing of the hydraulic decoking process online monitoring. In this model, the transmission characteristics of acoustic signals generated by a moving sound source in a dynamic confined space are first analyzed using data recursion and correction according to the coordinate continuity in adjacent area and adjacent time. The results show that the nondetection zone of acoustic signals generated directly by the impact of water is eliminated, and the surface distribution of coke in the drum can be mapped in real time

    Effects of Chitosan Oligosaccharides on Human Blood Components

    Get PDF
    Chitosan oligosaccharide (COS) is known for its unique biological activities such as anti-tumor, anti-inflammatory, anti-oxidant, anti-bacterial activity, biological recognition, and immune enhancing effects, and thus continuous attracting many research interests in drug, food, cosmetics, biomaterials and tissue engineering fields. In comparison to its corresponding polymer, COS has much higher absorption profiles at the intestinal level, which results in permitting its quick access to the blood flow and potential contacting with blood components. However, the effects of COS on blood components remain unclear to date. Herein, two COS with different molecular weight (MW) were characterized by FTIR and 1H NMR, and then their effects on human blood components, including red blood cells (RBCs) (hemolysis, deformability, and aggregation), coagulation system [activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and the concentration of fibrinogen (Fib)], complement (C3a and C5a activation), and platelet (activation and aggregation), were comprehensively studied. In the case of RBCs, COS exhibited a low risk of hemolysis in a dose and molecular weight dependent manner and the irreversible aggregation was observed in their high concentration. For coagulation system, COS has a mild anticoagulation activity through blocking the intrinsic coagulation pathway. In addition, COS showed no effect on complement activation in C3a and C5a and on platelet activation while inhibition of platelet aggregation was evident. Finally, the mechanism that effects of COS on blood components was discussed and proposed

    ORP4L Extracts and Presents PIP2 from Plasma Membrane for PLC beta 3 Catalysis : Targeting It Eradicates Leukemia Stem Cells

    Get PDF
    Leukemia stem cells (LSCs) are a rare subpopulation of abnormal hematopoietic stem cells (HSCs) that propagates leukemia and are responsible for the high frequency of relapse in therapies. Detailed insights into LSCs' survival will facilitate the identification of targets for therapeutic approaches. Here, we develop an inhibitor, LYZ-81, which targets ORP4L with high affinity and specificity and selectively eradicates LCSs in vitro and in vivo. ORP4L is expressed in LSCs but not in normal HSCs and is essential for LSC bioenergetics and survival. It extracts PIP2 from the plasma membrane and presents it to PLC beta 3, enabling IP3 generation and subsequentCa(2+)-dependent bioenergetics. LYZ-81 binds ORP4L competitively with PIP2 and blocks PIP2 hydrolysis, resulting in defective Ca2+ signaling. The results provide evidence that LSCs can be eradicated through the inhibition of ORP4L by LYZ-81, which may serve as a starting point of drug development for the elimination of LSCs to eventually cure leukemia.Peer reviewe

    Review of advanced road materials, structures, equipment, and detection technologies

    Get PDF
    As a vital and integral component of transportation infrastructure, pavement has a direct and tangible impact on socio-economic sustainability. In recent years, an influx of groundbreaking and state-of-the-art materials, structures, equipment, and detection technologies related to road engineering have continually and progressively emerged, reshaping the landscape of pavement systems. There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies. Therefore, Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of “advanced road materials, structures, equipment, and detection technologies”. This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars, all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering. It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering: advanced road materials, advanced road structures and performance evaluation, advanced road construction equipment and technology, and advanced road detection and assessment technologies

    Design strategy and performance evaluation of novel miniature two-dimensional (2D) piston pump with a dual stacking mechanism

    No full text
    Since the traditional axial piston pumps have limitations to fulfill the development demands of hydraulic pumps under the electrification trend and maintain a high volumetric efficiency within various operating conditions, a new two-dimensional (2D) piston pump is proposed. In this study, the novel structure and working principle developed to raise the power density and achieve better performance were comprehensively introduced. As the motions of rotary and reciprocating are employed together, the new pump can achieve the purpose of compact structure, a small moment of inertia, and self-balancing of reciprocating inertial force. In addition, an accurate flow area during the oil discharge process was re-defined. A nonlinear mathematical model of the instantaneous flow rate of the new 2D pump for evaluating leakage performance and volumetric efficiency was established and studied in detail. Moreover, crucial features for further improvement of working performance were discussed. Then, a prototype pump was made to experimentally measure the output flow at various load pressures (from 1 MPa to 8 MPa) and rotational speeds (from 1000 r/min to 6000 r/min). The volumetric efficiency was in a range of 91.27% to 99.21%. The results of simulations and experiments well demonstrated the capabilities of the proposed novel 2D pump

    Study on mechanical efficiency of 65 ml/r fuel pump and its piston optimization

    No full text
    The 65 ml/r fuel pump proposed in this paper is a new type of large-displacement piston pump. The pump is of the roller plunger type construction. This structure enables the pump to have good performance even under high and variable speed conditions. Firstly, force analysis of this pump and establishment of mathematical model of pump mechanical efficiency. The influence of load pressure and speed on mechanical efficiency was obtained by numerical simulation through matlab. Then the prototype was designed and manufactured. The pump outlet pressure, outlet flow rate, and torque were measured on the test bench under various load pressure and speed, and mechanical efficiency of pump at various load pressure and speed was got. The experimental data and simulation are close. 65 ml/r fuel pump has a volumetric efficiency of 99% and a mechanical efficiency of 58.6% at a load pressure of 3 MPa and a speed of 1500 rpm. From experimental results, 65 ml/r fuel pump volumetric efficiency is high, but there is a problem of low mechanical efficiency. The piston of pump will be optimized for improved mechanical efficiency of pump. Then mechanical efficiency of the optimized pump is calculated and compared with mechanical efficiency before optimization. Results show that piston optimization will increase mechanical efficiency of pump

    Study of the Dynamic Properties of the Miniature Electro-Hydrostatic Actuator

    No full text
    The electro-hydrostatic actuator (EHA) is a new type of high-performance servo actuator that originated in the field of aerospace, and it is gradually becoming a common basic component for various types of large equipment. A miniature EHA, mainly composed of a micro two-dimensional (2D) piston pump and a brushless DC motor, is designed in this article by simplifying the system structure. This paper analyzes the structure and working principle of this EHA and establishes the mathematical models of the brushless DC motor, micro two-dimensional pump, and hydraulic cylinder. Field-oriented control (FOC) is used to drive the brushless DC motor, and the models of the controller are established in Simulink. Furthermore, the models of the mechanical and hydraulic systems of the miniature EHA are established in AMESim. In addition to this, a prototype of this miniature EHA was fabricated in this paper and an experimental platform was built for experiments. In the joint simulation environment, the rise time of the EHA system at 6000 r/min is 0.158 s and the frequency response amplitude attenuation to −3 dB has a bandwidth of 20 Hz. On the other hand, the constructed miniature EHA prototype was dynamically characterized to obtain a rise time of 0.242 s at 6000 r/min and a bandwidth of 13 Hz. In this paper, the feasibility of the design scheme of the miniature EHA system is verified, and its excellent dynamic properties are verified with simulation and experiment

    Optimization of Mechanical Efficiency Models for 2D Piston Pumps with a Stacked Taper Roller Set

    No full text
    Since the clearance between the guide rail and the roller reduces the efficiency of the 2D pump, this paper proposes a novel 2D piston pump with stacked taper roller sets to eliminate the effect of the clearance. The structure of the 2D pump is introduced, and the mathematical model of the torque and the mechanical efficiency of the bilateral force on the guide rail are established and analyzed. The model takes into account the change in the oil viscosity, the spatial angle and the oil churning loss. A test rig was built to test the mechanical efficiency under different operating conditions. The unilateral and bilateral force models of the guide rail were compared, which proved that the bilateral force model of the guide rail can predict the mechanical efficiency more accurately than the unilateral force model. In the case of high load pressure, there was a clearance between the test results and the model calculation results. It is speculated that the main reason for this is that the greater oil pressure causes the size of the contact area between the two taper rollers and between the taper roller and the guide rail to become larger. The resulting rolling friction coefficient becomes larger, which affects the mechanical efficiency
    corecore