88 research outputs found

    Fighting Zoom Fatigue: Keeping the Zoombies at Bay

    Get PDF
    The coronavirus disease of 2019 (COVID-19) pandemic caused much disruption in early 2020 to educational processes around the world. Traditional classroom experiences transitioned to emergency remote ones, and, with little guidance or preparation, time many educators simply moved their lessons to an online video format using video conferencing systems. The methods that effective online teaching requires differ from the methods that traditional lecture formats require, and, as such, students often found themselves fighting online video meeting fatigue. To combat online meeting fatigue, we tested and employed several strategies that we discuss in this paper. We found activity switching, online small groups, and asynchronous lectures particularly effective techniques

    Understanding the public health role, motivations, and perceptions of Community Health Workers deployed to Low-Income Housing in Richmond, Virginia

    Get PDF
    Background For the US health indicators to improve to the level of other developed countries, the use of Community Health Workers (CHWs) in vulnerable populations has been indicated as a possible long-term intervention. There are few models of long-term deployment of CHWs as part of the district level public health system in the US. Method In this study we interviewed CHWs who served as neighborhood-integrated health district staff assigned to low-income housing in Richmond, Virginia for 10 years. Qualitative analyses of their taped and transcribed interviews resulted in 5 themes from the interviews. The themes were Activities, Satisfaction, Strengths, Facilitation/Resources and Challenges. We highlighted quotes from the CHWs interviews for themes and summarized the findings from each theme. Results CHWs carried out a variety of activities daily and these were described. The CHWs were generally satisfied with their job because it enabled them to assist others. The strength of their communities was resilience, and the resources they needed more included physical resources, human resources, political support, and more comprehensive programming. Their client’s challenges include transportation, mental health, and physical safety and the CHWs challenge to effectively carrying out their work with clients was trust by community members. Conclusion The information garnered from the CHWs would be useful in designing CHW programs at other health districts

    Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region

    Get PDF
    The Last Glacial Termination is marked by changing environmental conditions affected by abrupt and rapid climate oscillations, such as Heinrich Stadial 1 (HS1), which is characterized by extremely low sea surface temperatures (SST) and significant changes in northern hemisphere terrestrial landscape (e.g., vegetation) and human dispersion. Previous studies show that overall cold/dry conditions occurred during HS1, but the lack of high-resolution records precludes whether climate was stable or instead characterized by instability. A high-resolution paleoclimatic record from the Padul wetland (southern Iberian Peninsula), supported by a high-resolution chronology and contrasted with other records from southern Europe and the Mediterranean region, shows 1) that the age boundaries of HS1 in this area occurred at similar to 18.0 kyr BP (median age = 17,970 cal yr BP; mean age = 18,030 +/- 330 cal yr BP) and similar to 15.2 kyr BP (median age = 15,210 cal yr BP; mean age = 15,200 +/- 420 cal yr BP) and 2) that climate during HS1 was non-stationary and centennial-scale variability in moisture is superimposed on this overall cold climatic period. In this study, we improve the pollen sampling resolution with respect to previous studies on the same Padul-15-05 sedimentary core and suggest a novel subdivision of HS1 in 7 sub-phases, including: i) 3 sub-phases (a.1-a.3) during an arid early phase (HS1a; similar to 18.4-17.2 kyr BP), ii) a relatively humid middle phase (HS1b; similar to 17.2-16.9 kyr BP), and iii) 3 sub-phases (c.1-c.3) during an arid late phase (HS1c; similar to 16.9-15.7 kyr BP). This climatic subdivision is regionally supported by SST oscillations from the Mediterranean Sea, suggesting a strong land-sea coupling. A cyclostratigraphic analysis of pollen data between 20 and 11 kyr BP indicates that the climate variability and the proposed subdivisions characterized by similar to 2000 and similar to 800-yr periodicities could be related to solar forcing controlling climate in this area. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands

    Get PDF
    Alpine regions of the Mediterranean realm are among the most climatically sensitive areas in the world. Thus, alpine wetlands from the southern Iberian Peninsula, in the westernmost part of the Mediterranean region, are highly sensitive sensors of environmental changes. Difficulties have surfaced in separating controls by temperature and/or precipitation in previous paleoenvironmental studies from alpine environments in this area. We present a Holocene biomarker record (n-alkanes and long-chain diols) from a high elevation lake, Laguna de Río Seco (LdRS), in the south of the Iberian Peninsula, which contributes to the identification of these forcing mechanisms. The hydrological history of the area, primarily water availability and evapotranspiration, is reconstructed by means of the n-alkane record, including the indices of average chain length, portion aquatic, and carbon preference index, as well as hydrogen isotopes (δD) of aquatic (δDaq) and terrestrial (δDwax) n-alkanes. Temperatures are also estimated using the algae derived long-chain diols. We interpret δDaq and δDwax fluctuations as showing changes in the source and amount of precipitation throughout the LdRS record. An Atlantic precipitation source appears to have predominated during the early-middle Holocene, but an occasional Mediterranean influence with an isotopic enrichment in precipitation is detected in the middle-late Holocene that is likely related to the setting of the current atmospheric pattern in southeastern Iberia under the joint control of the North Atlantic Oscillation (NAO) and the Western Mediterranean dynamics, such as the Western Mediterranean Oscillation (WeMO). Our new record from LdRS is consistent with a generalized trend of a humid early-middle Holocene with low temperature variability, evolving towards an arid middle-late Holocene with abrupt temperature changes. In addition to these long-term trends during the last ∼10,500 years, two phases of climate instability, evidenced by abrupt depletions in δDaq, have been identified at the end of these periods, one between ∼6500 and 5500 cal yr BP and another in the last ∼500 years. These episodes would represent strengthened winter cold conditions that favoured the persistence of snowpack and frozen soil in the catchment, causing reduced terrestrial plant growth and low lake evaporation. According to the long-chain diol record, temperatures during these phases were relatively low, but experienced abrupt increases at the end of each period

    A palaeoecological approach to understanding the past and present of Sierra Nevada, a Southwestern European biodiversity hotspot

    Get PDF
    Mediterranean mountainous environments are biodiversity hotspots and priority areas in conservation agendas. Although they are fragile and threatened by forecasted global change scenarios, their sensitivity to long-term environmental variability is still understudied. The Sierra Nevada range, located in southern Spain on the north-western European flanks of the Mediterranean basin, is a biodiversity hotspot. Consequently, Sierra Nevada provides an excellent model system to apply a palaeoecological approach to detect vegetation changes, explore the drivers triggering those changes, and how vegetation changes link to the present landscape in such a paradigmatic mountain system. A multi-proxy strategy (magnetic susceptibility, grain size, loss-on-ignition, macroremains, charcoal and palynological analyses) is applied to an 8400-year long lacustrine environmental archive from the Laguna de la Mosca (2889 masl). The long-term ecological data show how the Early Holocene pine forests transitioned towards mixed Pinus-Quercus submediterranean forests as a response to a decrease in seasonality at ~7.3 cal. kyr BP. The mixed Pinus-Quercus submediterranean forests collapsed drastically giving way to open evergreen Quercus formations at ~4.2 cal. kyr BP after a well-known aridity crisis. Under the forecasted northward expansion of the Mediterranean area due to global change-related aridity increase, mountain forests inhabiting territories adjacent to the Mediterranean Region could experience analogous responses to those detected in the Sierra Nevada forests to the Mid to Late Holocene aridification, moving from temperate to submediterranean and then Mediterranean formations

    Millennial-scale cyclical environment and climate variability during the Holocene in the western Mediterranean region deduced from a new multi-proxy analysis from the Padul record (Sierra Nevada, Spain)

    Get PDF
    A high-resolution multi-proxy approach, integrating pollen, inorganic and organic geochemical and sedimentological analyses, has been carried out on the Holocene section of the Padul sedimentary record in the southern Iberian Peninsula reconstructing vegetation, environment and climate throughout the last ~ 11.6 cal kyr BP in the western Mediterranean. The study of the entire Holocene allows us to determine the significant climate shift that occurred during the middle-to-late Holocene transition. The highest occurrence of deciduous forest in the Padul area from ~ 9.5 to 7.6 cal kyr BP represents the Holocene humidity optimum probably due to enhanced winter precipitation during a phase of highest seasonal anomaly and maximum summer insolation. Locally, insolation maxima induced high evaporation, counterbalancing the effect of relatively high precipitation, and triggered very low water table in Padul and the deposition of peat sediments. A transitional environmental change towards more regional aridity occurred from ~ 7.6 to 4.7 cal kyr BP and then aridification enhanced in the late Holocene most likely related to decreasing summer insolation. This translated into higher water levels and a sedimentary change at ~ 4.7 cal kyr BP in the Padul wetland, probably related to reduced evaporation during summer in response to decreased in seasonality. Millennial-scale variability is superimposed on the Holocene long-term trends. The Mediterranean forest regional climate proxy studied here shows significant cold-arid events around ~ 9.6, 8.5, 7.5, 6.5 and 5.4 cal kyr BP with cyclical periodicities (~1100 and 2100 yr) during the early and middle Holocene. A change is observed in the periodicity of these cold-arid events towards ~1430 yr in the late Holocene, with forest declines around ~ 4.7–4, 2.7 and 1.3 cal kyr BP. The comparison between the Padul-15-05 data with published North Atlantic and Mediterranean paleoclimate records suggests common triggers for the observed climate variability, with the early and middle Holocene forest declines at least partially controlled by external forcing (i.e. solar activity) and the late Holocene variability associated with internal mechanisms (oceanic-atmospheric)

    Paleohydrological dynamics in the Western Mediterranean during the last glacial cycle

    Get PDF
    The transitional regions between the low and high latitudes of the Northern Hemisphere are highly vulnerable to future climate change yet most of the current climate models usually diverge in their projections. To better understand the dynamics in these regions, the reconstruction of past hydrological fluctuations and precipitation patterns is of paramount importance to accurately constrain present and future climate scenarios. In this study, we investigated paleohydrological dynamics in the western Mediterranean region, a transitional zone between low-mid latitudes and Atlantic - Mediterranean realms. We reconstruct precipitation and moisture source changes during the last -35 ka in order to propose the potential mechanisms driving these oscillations. To do so, we use hydrogen isotopes from sedimentary leaf waxes, more specifically the C31 n-alkane homologue, and a precipitation proxy based on previously published pollen data from a sedimentary core (Padul-15-05) in southern Iberia (Padul wetland -37-N). With this combination we disentangle the coupled effect of precipitation amount and source on the hydrogen isotopic signature of the studied C31 n-alkane record. Our results show three main periods characterized by different precipitation patterns. Low precipitation, mainly linked to a significant contribution from an isotopically-enriched Mediterranean precipitation source, occurred from -30 to -15.5 ka BP and during the last -5 ka, whereas enhanced precipitation with a predominant isotopically-depleted Atlantic precipitation source prevailed from -15.5 to -5 ka BP. This latter stage is here defined as the Western Mediterranean Humid Period (WMHP). In addition, some occasional millennial-scale opposite precipitation patterns can be observed during these climatically distinct periods. These changes in the source of precipitation were likely coupled to a shift in the main rainy season from winter, when Atlantic precipitation prevailed, to late winter-early spring, when the contribution of Mediterranean moisture is higher. Comparison between the studied mid-latitude terrestrial Padul-15-05 core and a low-latitude marine record offshore of northwestern Africa shows clear long-term synchronous responses of both western Mediterranean precipitation and western African monsoon systems to northern Hemisphere atmospheric dynamics, ultimately controlled by orbital forcing and ice-sheets fluctuations.Peer reviewe

    Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period

    Get PDF
    Alpine ecosystems of the southern Iberian Peninsula are among the most vulnerable and the first to respond to modern climate change in southwestern Europe. While major environmental shifts have occurred over the last similar to 1500 years in these alpine ecosystems, only changes in the recent centuries have led to abrupt environmental responses, but factors imposing the strongest stress have been unclear until now. To understand these environmental responses, this study, for the first time, has calibrated an algal lipid-derived temperature proxy (based on long-chain alkyl diols) to instrumental historical data extending alpine temperature reconstructions to 1500 years before present. These novel results highlight the enhanced effect of greenhouse gases on alpine temperatures during the last similar to 200 years and the long-term modulating role of solar forcing. This study also shows that the warming rate during the 20th century (similar to 0.18 degrees C per decade) was double that of the last stages of the Little Ice Age (similar to 0.09 degrees C per decade), even exceeding temperature trends of the high-altitude Alps during the 20th century. As a consequence, temperature exceeded the preindustrial record in the 1950s, and it has been one of the major forcing processes of the recent enhanced change in these alpine ecosystems from southern Iberia since then. Nevertheless, other factors reducing the snow and ice albedo (e.g., atmospheric deposition) may have influenced local glacier loss, since almost steady climate conditions predominated from the middle 19th century to the first decades of the 20th century.Peer reviewe
    • …
    corecore