33 research outputs found

    Engineering of an environmental isolate of bacillus megaterium for biochemical production under supercritical CO2

    Get PDF
    Continuous processing is a mainstay for chemical production but is far less common for biochemical processes. The increase in productivity and corresponding decrease in costs make continuous processing an intriguing option for bulk chemicals where price is a major consideration. Among the various challenges of continuous bioprocessing are the risks of contamination and the toxicity of the target products. Supercritical carbon dioxide (scCO2) may provide a means to address both of these issues. scCO2 is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones and aldehydes. scCO2 is also known for its broad microbial lethality. The isolation and engineering of a microbe that is capable of growth and production in the presence of scCO2 thus represents an opportunity to create a production environment that is both resist to contamination and capable of sequestering toxic products through phase separation. Using a targeted bioprospecting approach by sampling fluid from a natural, deep-subsurface scCO2 well, a strain of Bacillus megaterium was isolated that is able to germinate and grow in the presence of scCO2. Transformation is possible using a protoplast-based method, which permitted the identification of promoters capable of inducible heterologous protein expression in both aerobic and anaerobic conditions. A xylose-inducible promoter was evaluated under scCO2 and found to have similar expression under both conditions. We engineered the B. megaterium strain to produce isobutanol from 2-ketoisovalerate by introducing a two-enzyme pathway (2- ketoisovalerate decarboxylase (KivD) and alcohol dehydrogenase (Adh)). Due to the strong partition of the aldehyde to the scCO2 phase, we tested five homologous Adh enzymes and found that YqhD from E. coli resulted in greater than 85% conversion when grown aerobically. Isobutanol production was also observed when our recombinant strain was cultured under scCO2. Finally, we have developed a process model for an integrated bioprocess and have found conditions that are comparable if not better than existing in situ extraction techniques such as gas stripping. Boock, J.T., A.J.E. Freedman, G.A. Tompsett, S.K. Muse, A.J. Allen, L.A. Jackson, B. Castro-Dominguez, M.T. Timko, K.L.J. Prather (co-corresponding author), J.R. Thompson. 2019. “Engineered microbial biofuel production and recovery under supercritical carbon dioxide.” Nat. Commun. 10:587. DOI: 10.1038/s41467- 019-08486-6

    Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols

    Get PDF
    peer-reviewedThis study presents the effect of lignocellulosic compounds and monolignols on the yield, nanostructure and reactivity of soot generated at 1250  ° C in a drop tube furnace. The structure of soot was characterized by electron microscopy techniques, Raman spectroscopy and electron spin resonance spectroscopy. The CO2 reactivity of soot was investigated by thermogravimetric analysis. Soot from cellulose was more reactive than soot produced from extractives, lignin and monolignols. Soot reactivity was correlated with the separation distances between adjacent graphene layers, as measured using transmission electron microscopy. Particle size, free radical concentration, differences in a degree of curvature and multi-core structures influenced the soot reactivity less than the interlayer separation distances. Soot yield was correlated with the lignin content of the feedstock. The selection of the extraction solvent had a strong influence on the soot reactivity. The Soxhlet extraction of softwood and wheat straw lignin soot using methanol decreased the soot reactivity, whereas acetone extraction had only a modest effect
    corecore