112 research outputs found

    Niagaran (Silurian) trilobites from Ohio

    Get PDF
    For the most part, Silurian trilobites from Ohio have been poorly documented. This paper records taxa from the Niagaran Series. Specimens discussed here were collected from the southern and west-central areas of the state. Species reported here are Arctinurus boltoni (which is questionably recorded from Ohio), Bumastus insignis, Cheirurus niagarensis, Flexicalymene celebra, Sphaerexochus romingeri, Trimerus delphinocephalus, Dalmanites brevicaudatus, and Dalmanites platycaudatus. One species of Calymene is left in open nomenclature. During the deposition of the Niagaran in Ohio, trilobites lived in a variety of shallow marine environments, although most are associated with reef, inter-reef, and reef-flank lithofacies.No embarg

    Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter

    Get PDF
    The Madden–Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999. The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models

    Working group written presentation: Trapped radiation effects

    Get PDF
    The results of the Trapped Radiation Effects Panel for the Space Environmental Effects on Materials Workshop are presented. The needs of the space community for new data regarding effects of the space environment on materials, including electronics are listed. A series of questions asked of each of the panels at the workshop are addressed. Areas of research which should be pursued to satisfy the requirements for better knowledge of the environment and better understanding of the effects of the energetic charged particle environment on new materials and advanced electronics technology are suggested

    Development and geometry of isotropic and directional shrinkage crack patterns

    Full text link
    We have studied shrinkage crack patterns which form when a thin layer of an alumina/water slurry dries. Both isotropic and directional drying were studied. The dynamics of the pattern formation process and the geometric properties of the isotropic crack patterns are similar to what is expected from recent models, assuming weak disorder. There is some evidence for a gradual increase in disorder as the drying layer become thinner, but no sudden transition, in contrast to what has been seen in previous experiments. The morphology of the crack patterns is influenced by drying gradients and front propagation effects, with sharp gradients having a strong orienting and ordering effect.Comment: 8 pages, 11 figures, 8 in jpg format, 3 in postscript. See also http://mobydick.physics.utoronto.ca/mud.htm

    Vaccination with M2e-Based Multiple Antigenic Peptides: Characterization of the B Cell Response and Protection Efficacy in Inbred and Outbred Mice

    Get PDF
    The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains.Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs.Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population

    Influenza H5 Hemagglutinin DNA Primes the Antibody Response Elicited by the Live Attenuated Influenza A/Vietnam/1203/2004 Vaccine in Ferrets

    Get PDF
    Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1) candidate vaccine (LAIV, VN04 ca) primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03) and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness

    Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens

    Get PDF
    Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines

    Characterizing Emerging Canine H3 Influenza Viruses.

    Get PDF
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned
    • …
    corecore