259 research outputs found

    Luttinger liquids with curvature: Density correlations and Coulomb drag effect

    Full text link
    We consider the effect of the curvature in fermionic dispersion on the observable properties of Luttinger liquid (LL). We use the bosonization technique where the curvature is irrelevant perturbation, describing the decay of LL bosons (plasmon modes). When possible, we establish the correspondence between the bosonization and the fermionic approach. We analyze modifications in density correlation functions due to curvature at finite temperatures, T. The most important application of our approach is the analysis of the Coulomb drag by small momentum transfer between two LL, which is only possible due to curvature. Analyzing the a.c. transconductivity in the one-dimensional drag setup, we confirm the results by Pustilnik et al. for T-dependence of drag resistivity, R_{12} ~ T^2 at high and R_{12} ~ T^5 at low temperatures. The bosonization allows for treating both intra- and inter-wire electron-electron interactions in all orders, and we calculate exact prefactors in low-T drag regime. The crossover temperature between the two regimes is T_1 ~ E_F \Delta, with \Delta relative difference in plasmon velocities. We show that \Delta \neq 0 even for identical wires, due to lifting of degeneracy by interwire interaction, U_{12}, leading to crossover from R_{12} ~ U_{12}^2 T^2 to R_{12} \~ T^5/U_{12} at T ~ U_{12}.Comment: 16 pages, 10 figures, REVTE

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Correlated sequential tunneling through a double barrier for interacting one-dimensional electrons

    Full text link
    The problem of resonant tunneling through a quantum dot weakly coupled to spinless Tomonaga-Luttinger liquids has been studied. We compute the linear conductance due to sequential tunneling processes upon employing a master equation approach. Besides the previously used lowest-order golden rule rates describing uncorrelated sequential tunneling (UST) processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects can be important. Focusing mainly on the temperature dependence of the peak conductance, we discuss the relation of these findings to previous theoretical and experimental results.Comment: replaced with the published versio

    Signatures of Strong Correlations in One-Dimensional Ultra-Cold Atomic Fermi Gases

    Full text link
    Recent success in manipulating ultra-cold atomic systems allows to probe different strongly correlated regimes in one-dimension. Regimes such as the (spin-coherent) Luttinger liquid and the spin-incoherent Luttinger liquid can be realized by tuning the inter-atomic interaction strength and trap parameters. We identify the noise correlations of density fluctuations as a robust observable (uniquely suitable in the context of trapped atomic gases) to discriminate between these two regimes. Finally, we address the prospects to realize and probe these phenomena experimentally using optical lattices.Comment: 4 pages, 2 figure

    Ground-state phase diagram of the one-dimensional Hubbard-model with an alternating potential

    Full text link
    We investigate the ground-state phase diagram of the one-dimensional half-filled Hubbard model with an alternating potential--a model for the charge-transfer organic materials and the ferroelectric perovskites. We numerically determine the global phase diagram of this model using the level-crossing and the phenomenological renormalization-group methods based on the exact diagonalization calculations. Our results support the mechanism of the double phase transitions between Mott and a band insulators pointed out by Fabrizio, Gogolin, and Nersesyan [Phys. Rev. Lett. 83, 2014 (1999)]: We confirm the existence of the spontaneously dimerized phase as an intermediate state. Further we provide numerical evidences to check the criticalities on the phase boundaries. Especially, we perform the finite-size-scaling analysis of the excitation gap to show the two-dimensional Ising transition in the charge part. On the other hand, we confirm that the dimerized phase survives in the strong-coupling limit, which is one of the resultants of competition between the ionicity and correlation effects.Comment: 8 pages, 8 figure

    Transmission of correlated electrons through sharp domain walls in magnetic nanowires: a renormalization group approach

    Full text link
    The transmission of correlated electrons through a domain wall in a ferromagnetic one dimensional system is studied theoretically in the limit of a domain wall width smaller or comparable to the electron Fermi wavelength. The domain wall gives rise to both potential and spin dependent scattering of the charge carriers. Using a poor man's renormalization group approach for the electron-electron interactions, we obtain the low temperature behavior of the reflection and transmission coefficients. The results show that the low-temperature conductance is governed by the electron correlations, which may suppress charge transport without suppressing spin current. The results may account for a huge magnetoresistance associated with a domain wall in ballistic nanocontacs.Comment: 13 pages, 6 figure

    Spin-excitations of the quantum Hall ferromagnet of composite fermions

    Get PDF
    The spin-excitations of a fractional quantum Hall system are evaluated within a bosonization approach. In a first step, we generalize Murthy and Shankar's Hamiltonian theory of the fractional quantum Hall effect to the case of composite fermions with an extra discrete degree of freedom. Here, we mainly investigate the spin degrees of freedom, but the proposed formalism may be useful also in the study of bilayer quantum-Hall systems, where the layer index may formally be treated as an isospin. In a second step, we apply a bosonization scheme, recently developed for the study of the two-dimensional electron gas, to the interacting composite-fermion Hamiltonian. The dispersion of the bosons, which represent quasiparticle-quasihole excitations, is analytically evaluated for fractional quantum Hall systems at \nu = 1/3 and \nu = 1/5. The finite width of the two-dimensional electron gas is also taken into account explicitly. In addition, we consider the interacting bosonic model and calculate the lowest-energy state for two bosons. Besides a continuum describing scattering states, we find a bound-state of two bosons. This state is interpreted as a pair excitation, which consists of a skyrmion of composite fermions and an antiskyrmion of composite fermions. The dispersion relation of the two-boson state is evaluated for \nu = 1/3 and \nu = 1/5. Finally, we show that our theory provides the microscopic basis for a phenomenological non-linear sigma-model for studying the skyrmion of composite fermions.Comment: Revised version, 14 pages, 4 figures, accepted to Phys. Rev.

    Newton's law for Bloch electrons, Klein factors and deviations from canonical commutation relations

    Full text link
    The acceleration theorem for Bloch electrons in a homogenous external field is usually presented using quasiclassical arguments. In quantum mechanical versions the Heisenberg equations of motion for an operator k^(t)\hat {\vec k}(t) are presented mostly without properly defining this operator. This leads to the surprising fact that the generally accepted version of the theorem is incorrect for the most natural definition of k^\hat {\vec k}. This operator is shown not to obey canonical commutation relations with the position operator. A similar result is shown for the phase operators defined via the Klein factors which take care of the change of particle number in the bosonization of the field operator in the description of interacting fermions in one dimension. The phase operators are also shown not to obey canonical commutation relations with the corresponding particle number operators. Implications of this fact are discussed for Tomonaga-Luttinger type models.Comment: 9 pages,1 figur

    Revisiting Mt. Fuji's groundwater origins with helium, vanadium and eDNA tracers

    Get PDF
    Known locally as the water mountain , for millennia Japan's iconic Mt. Fuji has provided safe drinking water to millions of people via a vast network of groundwater and freshwater springs. Groundwater, which is recharged at high elevations, flows down Fuji's flanks within three basaltic aquifers, ultimately forming countless pristine freshwater springs along Fuji's foothills. Here, we challenge the current conceptual model of Fuji being a simple system of laminar groundwater flow with little to no vertical exchange between its three aquifers. This model contrasts strongly with Fuji's extreme tectonic instability due to its unique location on top of the only known continental trench-trench-trench triple junction, its complex geology, and its unusual microbial spring water communities. Based on a unique combination of microbial environmental DNA (eDNA), vanadium, and helium tracers, we provide evidence for prevailing deep circulation and previously unknown deep groundwater contribution to Fuji's freshwater springs. The most substantial deep groundwater upwelling has been found along Japan's tectonically most active Fujikawa-kako Fault Zone. Our findings broaden the hydrogeological understanding of Fuji and demonstrate the vast potential of combining eDNA, on-site noble gas, and trace element analyses for groundwater science

    One-dimensional Kondo lattice at partial band filling

    Full text link
    An effective Hamiltonian for the localized spins in the one-dimensional Kondo lattice model is derived via a unitary transformation involving a bosonization of delocalized conduction electrons. The effective Hamiltonian is shown to reproduce all the features of the model as identified in various numerical simulations, and provides much new information on the ferro- to paramagnetic phase transition and the paramagnetic phase.Comment: 11 pages Revtex, 1 Postscript figure. To appear in Phys. Rev. Let
    corecore