135 research outputs found

    From obesity resistance to obesity prediction and prevention?

    Get PDF
    Comment on: Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? [Front Neurosci. 2015

    Palmitoylethanolamide dampens reactive astrogliosis and improves neuronal trophic support in a triple transgenic model of Alzheimer’s disease: in vitro and in vivo evidence

    Get PDF
    Alzheimer’s disease (AD) is a neurodegenerative disorder responsible for the majority of dementia cases in elderly people. It is widely accepted that the main hallmarks of AD are not only senile plaques and neurofibrillary tangles but also reactive astrogliosis, which often precedes detrimental deposits and neuronal atrophy. Such phenomenon facilitates the regeneration of neural networks; however, under some circumstances, like in AD, reactive astrogliosis is detrimental, depriving neurons of the homeostatic support, thus contributing to neuronal loss. We investigated the presence of reactive astrogliosis in 3×Tg-AD mice and the effects of palmitoylethanolamide (PEA), a well-documented anti-inflammatory molecule, by in vitro and in vivo studies. In vitro results revealed a basal reactive state in primary cortical 3×Tg-AD-derived astrocytes and the ability of PEA to counteract such phenomenon and improve viability of 3×Tg-AD-derived neurons. In vivo observations, performed using ultramicronized- (um-) PEA, a formulation endowed with best bioavailability, confirmed the efficacy of this compound. Moreover, the schedule of treatment, mimicking the clinic use (chronic daily administration), revealed its beneficial pharmacological properties in dampening reactive astrogliosis and promoting the glial neurosupportive function. Collectively, our results encourage further investigation on PEA effects, suggesting it as an alternative or adjunct treatment approach for innovative AD therapy

    The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of progressive neurodegenerative disease characterized by cognitive impairment and mental disorders. The actual cause and cascade of events in the progression of this pathology is not fully determined. AD is multifaceted in nature and is linked to different multiple mechanisms in the brain. This aspect is related to the lack of efficacious therapies that could slow down or hinder the disease onset/progression. The ideal treatment for AD should be able to modulate the disease through multiple mechanisms rather than targeting a single dysregulated pathway. Recently, the endocannabinoid system emerged as a novel potential therapeutic target to treat AD. In fact, exogenous and endogenous cannabinoids seem to be able to modulate multiple processes in AD, although the mechanisms that are involved are not fully elucidated. This review provides an update of this area. In this review, we recapitulate the role of endocannabinoid signaling in AD and the probable mechanisms through which modulators of the endocannabinoid system provide their effects, thus highlighting how this target might provide more advantages over other therapeutic targets

    Modulation of the oxidative stress and lipid peroxidation by endocannabinoids and their lipid analogues

    Get PDF
    Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts

    Cannabinoid receptor 2 signaling in neurodegenerative disorders: From pathogenesis to a promising therapeutic target

    Get PDF
    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases

    Altered Expression of the CB1 Cannabinoid Receptor in the Triple Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD

    Neurokinin 1 receptor antagonism requires norepinephrine to increase serotonin function

    Get PDF
    The present studies examined the role of norepinephrine (NE) system in mediating the enhancement of 5-HT function produced by neurokinin (NK)1 receptor antagonism. Dorsal raphe 5-HT and locus coeruleus NE neurons were recorded in vivo in mice lacking NK1 receptors in wildtype mice pretreated with the NK1 antagonist RP67580 and its inactive enantiomer RP 68651. RP67580 and RP68651 were also tested on 5-HT neurons of mice lacking the 5-HT(1A) receptor. RP67580 increased the firing rate of 5-HT neurons in wildtype mice and in 5-HT(1A) null mutant mice to the same degree, thus indicating that the mechanism by which NK1 antagonists enhances 5-HT firing is independent of 5-HT(1A) receptors. NE neuronal burst activity was increased in NK1 null mutant and wildtype mice given RP67580, but not with RP68651. After NE depletion, RP67580 was ineffective in increasing 5-HT neuronal firing activity in NK1 wildtype mice, and the enhancement of 5-HT neuronal firing observed in NK1 null mutant mice was abolished. In conclusion, NE neurons are essential for the action of NK1 antagonists on 5-HT neurons. In addition, the desensitization of 5-HT(1A) autoreceptors produced by NK1 receptor antagonism is not critical for enhancing 5-HT neuronal firing

    Alterations of clock gene RNA expression in brain Regions of a triple transgenic model of Alzheimer's Disease

    Get PDF
    A disruption to circadian rhythmicity and the sleep/wake cycle constitutes a major feature of Alzheimer's disease (AD). The maintenance of circadian rhythmicity is regulated by endogenous clock genes and a number of external Zeitgebers, including light. This study investigated the light induced changes in the expression of clock genes in a triple transgenic model of AD (3×Tg-AD) and their wild type littermates (Non-Tg). Changes in gene expression were evaluated in four brain areas¾suprachiasmatic nucleus (SCN), hippocampus, frontal cortex and brainstem¾of 6- and 18-month-old Non-Tg and 3×Tg-AD mice after 12 h exposure to light or darkness. Light exposure exerted significant effects on clock gene expression in the SCN, the site of the major circadian pacemaker. These patterns of expression were disrupted in 3×Tg-AD and in 18-month-old compared with 6-month-old Non-Tg mice. In other brain areas, age rather than genotype affected gene expression; the effect of genotype was observed on hippocampal Sirt1 expression, while it modified the expression of genes regulating the negative feedback loop as well as Rorα, Csnk1ɛ and Sirt1 in the brainstem. In conclusion, during the early development of AD, there is a disruption to the normal expression of genes regulating circadian function after exposure to light, particularly in the SCN but also in extra-hypothalamic brain areas supporting circadian regulation, suggesting a severe impairment of functioning of the clock gene pathway. Even though this study did not demonstrate a direct association between these alterations in clock gene expression among brain areas with the cognitive impairments and chrono-disruption that characterize the early onset of AD, our novel results encourage further investigation aimed at testing this hypothesis

    Cannabinoid receptor agonist WIN 55,212-2 inhibits rat cortical dialysate gamma-aminobutyric acid levels

    Get PDF
    The effects of the cannabinoid receptor agonist WIN 55,212-2 (0.1-5 mg/kg i.p.) on endogenous extracellular gamma-aminobutyric acid (GABA) levels in the cerebral cortex of the awake rat was investigated by using microdialysis. WIN 55,212-2 (1 and 5 mg/kg i.p.) was associated with a concentration-dependent decrease in dialysate GABA levels (-16% +/- 4% and -26% +/- 4% of basal values, respectively). The WIN 55,212-2 (5 mg/kg i.p.) induced-inhibition was counteracted by a dose (0.1 mg/kg i.p.) of the CB(1) receptor antagonist SR141716A, which by itself was without effect on cortical GABA levels. These findings suggest that cannabinoids decrease cortical GABA levels in vivo, an action that might underlie some of the cognitive and behavioral effects of acute exposure to marijuana
    • …
    corecore