110 research outputs found

    Monarch Butterfly (Danaus plexippus) Life‐Stage Risks from Foliar and Seed‐Treatment Insecticides

    Get PDF
    Conservation of North America\u27s eastern monarch butterfly (Danaus plexippus) population would require establishment of milkweed (Asclepias spp.) and nectar plants in the agricultural landscapes of the north central United States. A variety of seed‐treatment and foliar insecticides are used to manage early‐ and late‐season pests in these landscapes. Thus, there is a need to assess risks of these insecticides to monarch butterfly life stages to inform habitat conservation practices. Chronic and acute dietary toxicity studies were undertaken with larvae and adults, and acute topical bioassays were conducted with eggs, pupae, and adults using 6 representative insecticides: beta‐cyfluthrin (pyrethroid), chlorantraniliprole (anthranilic diamide), chlorpyrifos (organophosphate), imidacloprid, clothianidin, and thiamethoxam (neonicotinoids). Chronic dietary median lethal concentration values for monarch larvae ranged from 1.6 × 10–3 (chlorantraniliprole) to 5.3 (chlorpyrifos) ÎŒg/g milkweed leaf, with the neonicotinoids producing high rates of arrested pupal ecdysis. Chlorantraniliprole and beta‐cyfluthrin were generally the most toxic insecticides to all life stages, and thiamethoxam and chlorpyrifos were generally the least toxic. The toxicity results were compared to insecticide exposure estimates derived from a spray drift model and/or milkweed residue data reported in the literature. Aerial applications of foliar insecticides are expected to cause high downwind mortality in larvae and eggs, with lower mortality predicted for adults and pupae. Neonicotinoid seed treatments are expected to cause little to no downslope mortality and/or sublethal effects in larvae and adults. Given the vagile behavior of nonmigratory monarchs, considering these results within a landscape‐scale context suggests that adult recruitment will not be negatively impacted if new habitat is established in close proximity of maize and soybean fields in the agricultural landscapes of the north central United States

    Risk Assessment of a Synthetic Pyrethroid, Bifenthrin on Pulses

    Get PDF
    This work was undertaken to determine the pre-harvest interval of bifenthrin and to minimize its residues in pulses and thereby ensure consumer safety and avoid non-compliance in terms of residues violations in export market. Furthermore the residue dynamics in the soil under pulses was explored to assess the environmental safety. The residues of bifenthrin dissipated following first order kinetics. The residues in harvest time grains were below the maximum residue limit (MRL) of 0.02 mg/kg applicable for European Union. In soil the degradation rate was fast with a half life of 2–3 days. This work is of high practical significance to the domestic and export pulse industry of India to ensure safety compliance in respect of bifenthrin residues, keeping in view the requirements of international trade

    Measurement and Computation of Movement of Bromide Ions and Carbofuran in Ridged Humic-Sandy Soil

    Get PDF
    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil–plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1–0.2 m layer of the ridges, while it was in the 0.3–0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields

    Determination of diquat by flow injection-chemiluminescence

    Full text link
    A simple, economic, sensitive and rapid method for the determination of the pesticide diquat was described. This new method was based on the coupling of flow injection analysis methodology and direct chemiluminescent detection; to the authors' knowledge, this approach had not been used up to now with this pesticide. It was based on its oxidation with ferricyanide in alkaline medium; significant improvements in the analytical signal were achieved by using high temperatures and quinine as sensitiser. Its high throughput (144 h(-1)), together with its low limit of detection (2 ng mL(-1)), achieved without need of preconcentration steps, permitted the reliable quantification of diquat over the linear range of (0.01-0.6) mu g mL(-1) in samples from different origins (river, tap, mineral and ground waters), even in the presence of a 40-fold concentration of paraquat, a pesticide commonly present in the commercial formulations of diquat.LĂłpez-Paz, JL.; CatalĂĄ-Icardo, M.; AntĂłn Garrido, B. (2009). Determination of diquat by flow injection-chemiluminescence. Analytical and Bioanalytical Chemistry. 394(4):1073-1079. doi:10.1007/s00216-009-2609-zS107310793944Hayes WJ Jr, Laws ER Jr (1991) Handbook of pesticide toxicology, Academic Press, San DiegoUS Environmental Protection Agency. http://www.epa.gov/06WDW/contaminants/dw_contamfs/diquat.html (accessed in August 2008)Horwitz W (2000) Official methods of analysis of AOAC International 17th edition. AOAC International, Gaithersburg, MD, USAHara S, Sasaki N, Takase D, Shiotsuka S, Ogata K, Futagami K, Tamura K (2007) Anal Sci 23(5):523–531Rial Otero R, Cancho Grande B, PĂ©rez Lamela C, Simal Gandara J, Aria Estevez M (2006) J Chromatogr Sci 44(9):539–542Aramendia MA, Borau V, Lafont F, Marinas JM, Moreno JM, Porras JM, Urbano FJ (2006) Food Chem 97(1):181–188Nuñez O, Moyano E, Galceran MT (2004) Anal Chim Acta 525(2):183–190Martinez Vidal JL, Belmonte Vega A, Sanchez Lopez FJ, Garrido Frenich AJ (2004) Chromatogr A 1050(2):179–184Lee XP, Kumazawa T, Fujishiro M, Hasegawa C, Arinobu T, Seno H, Sato K (2004) J Mass Spectrom 39(10):1147–1152De Almeida RM, Yonamine M (2007) J Chromatogr B 853(1–2):260–264De Souza D, Machado SAS (2006) Electroanalysis 18(9):862–872De Souza D, Da Silva MRC, Machado SAS (2006) Electroanalysis 18(23):2305–2313PicĂł Y, Rodriguez R, Manes J (2003) Trends Anal Chem 22(3):133–151Ishiwata T (2004) Bunseki Kagaku 53(8):863–864Carneiro MC, Puignou L, GalcerĂĄn MT (2000) Anal Chim Acta 408:263Luque M, Rios A, Valcarcel M (1998) Analyst 123(11):2383–2387Perez Ruiz T, MartĂ­nez Lozano C, Tomas V (1991) Int J Environ Anal Chem 44(4):243–252Perez Ruiz T, MartĂ­nez Lozano C, Tomas V (1991) Anal Chim Acta 244(1):99–104Townshend A (1990) Analyst 115:495–500LĂłpez Paz JL, CatalĂĄ Icardo M (2008) Anal Chim Acta 625:173–179PawlicovĂĄ Z, Sahuquillo I, CatalĂĄ Icardo M, GarcĂ­a Mateo JV, MartĂ­nez Calatayud J (2006) Anal Sci 22:29–34Albert GarcĂ­a JR, CatalĂĄ Icardo M, MartĂ­nez Calatayud J (2006) Talanta 69:608–614Tomlin CDS (1997) The pesticide manual, 11th edn.The British Crop Protection CouncilUKCatalĂĄ-Icardo M, MartĂ­nez-Calatayud J (2008) Crit Rev Anal Chem 38:118–130Ministerio de Medio Ambiente y Medio Rural y Marino. http://www.marm.es/ (accessed in September 2008)US Environmental Protection Agency. http://www.epa.gov/OGWWDW/contaminants (accessed in October 2008

    Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms

    Get PDF
    This paper evaluates the effects of different time-varying exposure patterns of the strobilurin fungicide azoxystrobin on freshwater microsocosm communities. These exposure patterns included two treatments with a similar peak but different time-weighted average (TWA) concentrations, and two treatments with similar TWA but different peak concentrations. The experiment was carried out in outdoor microcosms under four different exposure regimes; (1) a continuous application treatment of 10 Όg/L (CAT10) for 42 days (2), a continuous application treatment of 33 Όg/L (CAT33) for 42 days (3), a single application treatment of 33 Όg/L (SAT33) and (4) a four application treatment of 16 Όg/L (FAT16), with a time interval of 10 days. Mean measured 42-d TWA concentrations in the different treatments were 9.4 Όg/L (CAT10), 32.8 Όg/L (CAT33), 14.9 Όg/L (SAT33) and 14.7 Όg/L (FAT16). Multivariate analyses demonstrated significant changes in zooplankton community structure in all but the CAT10 treated microcosms relative to that of controls. The largest adverse effects were reported for zooplankton taxa belonging to Copepoda and Cladocera. By the end of the experimental period (day 42 after treatment), community effects were of similar magnitude for the pulsed treatment regimes, although the magnitude of the initial effect was larger in the SAT33 treatment. This indicates that for long-term effects the TWA is more important for most zooplankton species in the test system than the peak concentration. Azoxystrobin only slightly affected some species of the macroinvertebrate, phytoplankton and macrophyte assemblages. The overall no observed ecologically adverse effect concentrations (NOEAEC) in this study was 10 ”g/L

    Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against <it>Anopheles culicifacies </it>and <it>Anopheles stephensi </it>for its possible use in vector control.</p> <p>Methods</p> <p>Efficacy of chlorfenapyr against <it>An. culicifacies </it>and <it>An. stephensi </it>was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of <it>An. culicifacies</it>.</p> <p>Results</p> <p>A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of <it>An. culicifacies </it>species C showed higher LD50 and LD99 (0.67 and 2.39% respectively) values than the DDT-malathion-deltamethrin susceptible <it>An. culicifacies </it>species A (0.41 and 2.0% respectively) and <it>An. stephensi </it>strains (0.43 and 2.13% respectively) and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05). Residual activity of chlorfenapyr a.i. of 400 mg/m<sup>2 </sup>on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against <it>An. culicifacies </it>and up to 34 weeks against <it>An. stephensi</it>. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of <it>An. stephensi </it>and field-caught <it>An. culicifacies. </it>Potentiation studies demonstrated the antagonistic effect of PBO.</p> <p>Conclusion</p> <p>Laboratory studies with susceptible and resistant strains of <it>An. culicifacies </it>and <it>An. stephensi</it>, coupled with limited field studies with multiple insecticide-resistant <it>An. culicifacies </it>have shown that chlorfenapyr can be a suitable insecticide for malaria vector control, in multiple-insecticide-resistant mosquitoes especially in areas with pyrethroid resistant mosquitoes.</p

    PAHs, PCBs, PBDEs and Pesticides in Cold-Pressed Vegetable Oils

    Get PDF
    The aim of this study was to investigate levels of polychlorinated biphenyls (marker and dioxin-like congeners), polycyclic aromatic hydrocarbons (EPA 15 + 1), polybrominated diphenyl ethers (14 predominant congeners) and pesticides (74 compounds) in various cold-pressed vegetable oils. Poppy seed oil, rapeseed oil, sesame seed oil, pumpkinseed oil, hempseed oil, linaire oil, borage oil and evening star oil were investigated. Results of this study revealed that concentrations of PCBs, PBDEs and PAHs were low in majority of the investigated samples. However, high concentrations of organophosphorus insecticides were found. Chlorpyrifos methyl and pirimiphos methyl were the pesticide residues most commonly found in the studied oils. Concentration of 15 + 1 EPA PAHs was within the 17.85–37.16 Όg kg−1 range, concentration of (marker) PCBs varied from 127 to 24,882 pg g−1, dioxin-like TEQ values were below 0.1 pg TEQ g−1. Concentration of PBDEs was below LOQ in most cases

    Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils

    Get PDF
    Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degradation ability was observed in vineyard soil samples submitted to greater numbers of treatments. Respiration activities, as determined in the presence of selective antibiotics in soil suspensions amended with metalaxyl and folpet, showed that the fungal population was the microbiota community most active in the degradation process. Batch cultures performed with a progressive increase of fungicide concentrations allowed the selection of five tolerant fungal strains: Penicillium sp. 1 and Penicillium sp. 2, mycelia sterila 1 and 3, and Rhizopus stolonifer. Among these strains, mycelium sterila 3 and R. stolonifer presented only in vineyard soils treated with repeated application of these fungicides and showed tolerance >1,000 mg l−1 against commercial formulations of metalaxyl (10 %) plus folpet (40 %). Using specific methods for inducing sporulation, mycelium sterila 3 was identified as Gongronella sp. Because this fungus is rare, it was compared using csM13-polymerase chain reaction (PCR) with the two known species, Gongronella butleri and G. lacrispora. The high tolerance to metalaxyl and folpet shown by Gongronella sp. and R. stolonifer might be correlated with their degradation ability. Our results point out that selected strains have potential for the bioremediation of metalaxyl and folpet in polluted soil sites

    Synergy between Repellents and Organophosphates on Bed Nets: Efficacy and Behavioural Response of Natural Free-Flying An. gambiae Mosquitoes

    Get PDF
    Background: Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids. Methodology/Principal Findings: We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures. Conclusion: These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors
    • 

    corecore