49 research outputs found

    A cap 0-dependent mRNA capture method to analyze the yeast transcriptome

    Get PDF
    Analysis of the protein coding transcriptome by the RNA sequencing requires either enrichment of the desired fraction of coding transcripts or depletion of the abundant non-coding fraction consisting mainly of rRNA. We propose an alternative mRNA enrichment strategy based on the RNA-binding properties of the human IFIT1, an antiviral protein recognizing cap 0 RNA. Here, we compare for Saccharomyces cerevisiae an IFIT1-based mRNA pull-down with yeast targeted rRNA depletion by the RiboMinus method. IFIT1-based RNA capture depletes rRNA more effectively, producing high quality RNA-seq data with an excellent coverage of the protein coding transcriptome, while depleting cap-less transcripts such as mitochondrial or some non-coding RNAs. We propose IFIT1 as a cost effective and versatile tool to prepare mRNA libraries for a variety of organisms with cap 0 mRNA ends, including diverse plants, fungi and eukaryotic microbes

    Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance

    Get PDF
    The mechanism of human mitochondrial RNA turnover and surveillance is still a matter of debate. We have obtained a cellular model for studying the role of hSuv3p helicase in human mitochondria. Expression of a dominant-negative mutant of the hSUV3 gene which encodes a protein with no ATPase or helicase activity results in perturbations of mtRNA metabolism and enables to study the processing and degradation intermediates which otherwise are difficult to detect because of their short half-lives. The hSuv3p activity was found to be necessary in the regulation of stability of mature, properly formed mRNAs and for removal of the noncoding processing intermediates transcribed from both H and L-strands, including mirror RNAs which represent antisense RNAs transcribed from the opposite DNA strand. Lack of hSuv3p function also resulted in accumulation of aberrant RNA species, molecules with extended poly(A) tails and degradation intermediates truncated predominantly at their 3′-ends. Moreover, we present data indicating that hSuv3p co-purifies with PNPase; this may suggest participation of both proteins in mtRNA metabolism

    Three Essential Ribonucleases—RNase Y, J1, and III—Control the Abundance of a Majority of Bacillus subtilis mRNAs

    Get PDF
    Bacillus subtilis possesses three essential enzymes thought to be involved in mRNA decay to varying degrees, namely RNase Y, RNase J1, and RNase III. Using recently developed high-resolution tiling arrays, we examined the effect of depletion of each of these enzymes on RNA abundance over the whole genome. The data are consistent with a model in which the degradation of a significant number of transcripts is dependent on endonucleolytic cleavage by RNase Y, followed by degradation of the downstream fragment by the 5′–3′ exoribonuclease RNase J1. However, many full-size transcripts also accumulate under conditions of RNase J1 insufficiency, compatible with a model whereby RNase J1 degrades transcripts either directly from the 5′ end or very close to it. Although the abundance of a large number of transcripts was altered by depletion of RNase III, this appears to result primarily from indirect transcriptional effects. Lastly, RNase depletion led to the stabilization of many low-abundance potential regulatory RNAs, both in intergenic regions and in the antisense orientation to known transcripts

    Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    Get PDF
    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells

    Purification of eukaryotic exoribonucleases following heterologous expression in bacteria and analysis of their biochemical properties by in vitro enzymatic assays

    Get PDF
    Exoribonucleases-among the other RNases-play a crucial role in the regulation of different aspects of RNA metabolism in the eukaryotic cell. To fully understand the exact mechanism of activity exhibited by such enzymes, it is crucial to determine their detailed biochemical properties, notably their substrate specificity and optimal conditions for enzymatic action. One of the most significant features of exoribonucleases is the direction of degradation of RNA substrates, which can proceed either from 5'-end to 3'-end or in the opposite way. Here, we present methods allowing the efficient production and purification of eukaryotic exoribonucleases, the preparation and labeling of various RNA substrates, and the biochemical characterization of exonucleolytic activity. We also explain how the exonucleolytic activity may be distinguished from that of endonucleases

    Modelling of endoprostheses – applications of 3D and 5D printers in medicine

    No full text
    Praca przedstawia autorskie podejścia do modelowania powłok oraz obiektów wolumetrycznych o porowatej strukturze, wytwarzanych za pomocą drukarek 3D i 5D, które mogą być wykorzystane jako endoprotezy w zastosowaniach medycznych. W pierwszej kolejności zaproponowano generowanie otwartych oraz częściowo zamkniętych powłok opartych na trzech rodzajach siatek: trójkątnej, czworokątnej i heksagonalnej. Dla tej ostatniej, korzystając z notacji Bravisa, podano trzy równania generujące struktury Armchair, Chiral, Zig-zag. Dla wolumetrycznych obiektów porowatych rozważano metody wytwarzania bazujące na strukturach krystalograficznych oraz parametrycznych funkcjach generacyjnych. Zaproponowano optymalizację kształtu przestrzennych łączników, które opisano analitycznymi powierzchniami czwartego rzędu, poprawiających własności mechaniczne struktury. Dla powłok przeprowadzono szacowanie kosztów wykonania przedmiotu biorąc pod uwagę ilość zużytego materiału. Opisano również etapy procesu przetwarzania danych od momentu wczytania pliku STL (niezwiązana lista trójkątów) do wytworzenia zapisu poleceń (w standardzie G-code) dla drukarki 3D. Zasygnalizowano również tematykę technologii druku 5D przewidzianą do realizacji na nowatorskiej drukarce 5D.The paper presents original modelling approaches to the shells and volumetric porous structures produced by the application of 3D and 5D printers. These devices can be used to create endoprosthesis for medical applications. Based on the three types of meshes: triangular, rectangular, and hexagonal, the problem of generating open and partially closed shells has been considered. For porous volumetric structures the parametric generative function uses BRAVIS notation and crystallographic structures has been formed. To improve the mechanical properties of the structure, the shape of the all nodes has been replaced by local fourth order analytical surfaces. Proposed modeling method takes into account the cost of manufacturing and amount of used material. The paper also describes the stages of the STL data processing starting from the file loading (unbound list of triangles) to generating control commands (standard G-code) for a 3D printer. Some problems referring to the innovative printing technology 5D has been also described

    The strain-dependent cytostatic activity of Lactococcus lactis on CRC cell lines is mediated through the release of arginine deiminase

    Get PDF
    Abstract Background Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. Results In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. Conclusion For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy- Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken togethe

    Structure and mechanism of CutA, RNA nucleotidyl transferase with an unusual preference for cytosine

    No full text
    Template-independent terminal ribonucleotide transferases (TENTs) catalyze the addition of nucleotide monophosphates to the 3′-end of RNA molecules regulating their fate. TENTs include poly(U) polymerases (PUPs) with a subgroup of 3′ CUCU-tagging enzymes, such as CutA in Aspergillus nidulans. CutA preferentially incorporates cytosines, processively polymerizes only adenosines and does not incorporate or extend guanosines. The basis of this peculiar specificity remains to be established. Here, we describe crystal structures of the catalytic core of CutA in complex with an incoming non-hydrolyzable CTP analog and an RNA with three adenosines, along with biochemical characterization of the enzyme. The binding of GTP or a primer with terminal guanosine is predicted to induce clashes between 2-NH2_2 of the guanine and protein, which would explain why CutA is unable to use these ligands as substrates. Processive adenosine polymerization likely results from the preferential binding of a primer ending with at least two adenosines. Intriguingly, we found that the affinities of CutA for the CTP and UTP are very similar and the structures did not reveal any apparent elements for specific NTP binding. Thus, the properties of CutA likely result from an interplay between several factors, which may include a conformational dynamic process of NTP recognition
    corecore