53 research outputs found

    Unprecedented Water Effect as a Key Element in Salicyl-Glycine Schiff Base Synthesis

    Get PDF
    Salens, as chelating, double Schiff base ligands, are an important group utilized in transition metal catalysis. They have been used to build interesting functional metal-organic frameworks (MOFs). However, salens interacting with amino acids have also found applications in receptors. Here, we intended to form a “green” glycine-derived salen fragment, but the available literature data were contradictory. Therefore, we optimized the synthetic conditions and obtained the desired product as two different crystallographic polymorphs (orthorhombic Pcca and monoclinic P21/c space groups). Their structures differ in conformation at the glycine moiety, and the monoclinic form contains additional, disordered water molecules. Despite the high stability of Schiff bases, these newly obtained compounds hydrolyze in aqueous media, the process being accelerated by metal cations. These studies, accompanied by mechanistic considerations and solid-state moisture and thermal analysis, clarify the structure and behavior of this amino acid Schiff base and shed new light on the role of water in its stability

    Characterization of hepatic macrophages and evaluation of inflammatory response in heme oxygenase-1 deficient mice exposed to scAAV9 vectors

    Get PDF
    Adeno-associated viral (AAV) vectors are characterised by low immunogenicity, although humoral and cellular responses may be triggered upon infection. Following systemic administration high levels of vector particles accumulate within the liver. Kupffer cells (KCs) are liver resident macrophages and an important part of the liver innate immune system. Decreased functional activity of KCs can contribute to exaggerated inflammatory response upon antigen exposure. Heme oxygenase-1 (HO-1) deficiency is associated with considerably reduced numbers of KCs. In this study we aimed to investigate the inflammatory responses in liver and to characterise two populations of hepatic macrophages in adult wild type (WT) and HO-1 knockout (KO) mice following systemic administration of one or two doses (separated by 3 months) of self-complementary (sc)AAV9 vectors. At steady state, the livers of HO-1 KO mice contained significantly higher numbers of monocyte-derived macrophages (MDMs), but significantly less KCs than their WT littermates. Three days after re-administration of scAAV9 we observed increased mRNA level of monocyte chemoattractant protein-1 (Mcp-1) in the livers of both WT and HO-1 KO mice, but the protein level and the macrophage infiltration were not affected. Three days after the 1st and 3 days after the 2nd vector dose the numbers of AAV genomes in the liver were comparable between both genotypes indicating similar transduction efficiency, but the percentage of transgene-expressing MDMs and KCs was higher in WT than in HO-1 KO mice. In the primary culture, KCs were able to internalize AAV9 particles without induction of TLR9-mediated immune responses, but no transgene expression was observed. In conclusion, in vivo and in vitro cultured KCs have different susceptibility to scAAV9 vectors. Regardless of the presence or absence of HO-1 and initial numbers of KCs in the liver, scAAV9 exhibits a low potential to stimulate inflammatory response at the analysed time points

    Exacerbation of neonatal hemolysis and impaired renal iron handling in heme oxygenase 1-deficient mice

    Get PDF
    In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected

    Human induced pluripotent stem cell-derived cardiomyocytes, in contrast to adipose tissue-derived stromal cells, efficiently improve heart function in murine model of myocardial infarction

    Get PDF
    Cell therapies are extensively tested to restore heart function after myocardial infarction (MI). Survival of any cell type after intracardiac administration, however, may be limited due to unfavorable conditions of damaged tissue. Therefore, the aim of this study was to evaluate the therapeutic effect of adipose-derived stromal cells (ADSCs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing either the proangiogenic SDF-1α or anti-inflammatory heme oxygenase-1 (HO-1) in a murine model of MI. ADSCs and hiPSCs were transduced with lentiviral vectors encoding luciferase (Luc), GFP and either HO-1 or SDF-1α. hiPSCs were then differentiated to hiPSC-CMs using small molecules modulating the WNT pathway. Genetically modified ADSCs were firstly administered via intracardiac injection after MI induction in Nude mice. Next, ADSCs-Luc-GFP and genetically modified hiPSC-CMs were injected into the hearts of the more receptive NOD/SCID strain to compare the therapeutic effect of both cell types. Ultrasonography, performed on days 7, 14, 28 and 42, revealed a significant decrease of left ventricular ejection fraction (LVEF) in all MI-induced groups. No improvement of LVEF was observed in ADSC-treated Nude and NOD/SCID mice. In contrast, administration of hiPSC-CMs resulted in a substantial increase of LVEF, occurring between 28 and 42 days after MI, and decreased fibrosis, regardless of genetic modification. Importantly, bioluminescence analysis, as well as immunofluorescent staining, confirmed the presence of hiPSC-CMs in murine tissue. Interestingly, the luminescence signal was strongest in hearts treated with hiPSC-CMs overexpressing HO-1. Performed experiments demonstrate that hiPSC-CMs, unlike ADSCs, are effective in improving heart function after MI. Additionally, long-term evaluation of heart function seems to be crucial for proper assessment of the effect of cell administration

    Plasma hemostasis disturbances after heart transplantation procedure corrected by of human prothrombin complex

    Get PDF
    Hemostasis involves complex processes meaning blood not to extravasate. It's temporary cessation is necessary to perform cardiac surgery procedure with cardiopulmonary bypass. In heart transplantation, standard procedures of heparine neutralization are insufficient. We present results obtained from the group of 10 patients (8 men and 2 women) in mean age of 41±15 years, who underwent heart transplantation procedure with Lower-Shumway technique in moderate hypothermia (28°C). Mean cardiopulmonary bypass time was 218±20min, cross clampling aortic time was 114±18min and organ cold ischemia time was 221±16min. Postoperative human prothrombin complex was given after INR result (2.2±0.3) was obtained followed by normalized activated clotting time (ACT) 124±17seconds. In high risk patients undergoing cardiac surgery procedure, standard international normalized ration (INR) measurements following ACT results are required to obtain more detailed information concerning plasma hemostasis disturbances. Prothromplex Total NF (Baxter International Inc, USA) is a safe option to correct the problem without risk of overloading the patients circulatory system

    Oxygen functional groups on MWCNT surface as critical factor Boosting T-2 relaxation rate of water protons: towards improved CNT-based contrast agents

    Get PDF
    Purpose: Salicyl (Sal) – among other oxygen functionalities – multi-walled carbon nanotubes (MWCNTs) and their nanohybrids are investigated as promising contrast agents (CA) in magnetic resonance imaging (MRI) or drug delivery platforms, due to their unique properties. The preliminary results and the literature reports were the motivation to endow high r2 relaxivities, excellent dispersibility in water, and biocompatibility to superparamagnetic MWCNTs nanohybrids. It was hypothesized that these goals could be achieved by, not described in the literature yet, two-stage oxygen functionalization of MWCNTs. Results: Two structurally different MWCNT materials differing in diameters (44 and 12 nm) and the iron content (4.7% and 0.5%) are studied toward the functionalization effect on the T2 relaxometric properties. MWCNT oxidation is typically the first step of functionalization resulting in “first generation” oxygen functional groups (OFGs) on the surface. Until now, the impact of OFGs on the relaxivity of MWCNT was not truly recognized, but this study sheds light on this issue. By follow-up functionalization of oxidized MWCNT with 4-azidosalicylic acid through [2+1] cycloaddition of the corresponding nitrene, “second generation” of oxygen functional groups is grafted onto the nanohybrid, ie, Sal functionality. Conclusion: The introduced OFGs are responsible for an almost 30% increase in the relaxivity, which leads to remarkable r2 relaxivity of 951 mM−1s−1 (419 (mg/mL)−1s−1), the unprecedented value reported to date for this class of CAs. Also, the resulting nanohybrids express low cytotoxicity and superb diffusion after subcutaneous injection to a mouse
    corecore