828 research outputs found

    Entangling two distant non-interacting microwave modes

    Full text link
    We propose a protocol able to prepare two remote and initially uncorrelated microwave modes in an entangled stationary state, which is certifiable using only local optical homodyne measurements. The protocol is an extension of continuous variable entanglement swapping, and exploits two hybrid quadripartite opto-electro-mechanical systems in which a nanomechanical resonator acts as a quantum interface able to entangle optical and microwave fields. The proposed protocol allows to circumvent the problems associated with the fragility of microwave photons with respect to thermal noise and may represent a fundamental tool for the realization of quantum networks connecting distant solid-state and superconducting qubits, which are typically manipulated with microwave fields. The certifying measurements on the optical modes guarantee the success of entanglement swapping without the need of performing explicit measurements on the distant microwave fields.Comment: 7 pages, 3 figures; to appear in the special issue "Quantum and Hybrid Mechanical Systems - From Fundamentals to Applications" in Annalen der Physi

    Reversible optical to microwave quantum interface

    Full text link
    We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micro-mechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art opto-electro-mechanical devices, one can realise an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.Comment: 5 + 3 pages, 5 figure

    Density Matrix From Photon Number Tomography

    Full text link
    We provide a simple analytic relation which connects the density operator of the radiation field with the number probabilities. The problem of experimentally "sampling" a general matrix elements is studied, and the deleterious effects of nonunit quantum efficiency in the detection process are analyzed showing how they can be reduced by using the squeezing technique. The obtained result is particulary useful for intracavity field reconstruction states.Comment: LATEX,6 pages,accepted by Europhysics Letter

    Evidence for ultra-fast outflows in radio-quiet AGNs: III - location and energetics

    Get PDF
    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-fast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between ~0.01-1 M_{\odot} yr^{-1}, corresponding to >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are log\dot{E}_K~42.6-44.6 erg s^{-1}. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies.Comment: 5 pages, 3 figures, accepted for publication in MNRA
    • …
    corecore