20 research outputs found

    Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites

    Get PDF
    Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites

    Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation

    Get PDF
    Munc 18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc 18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc 18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc 18-1 in vitro and in cells. Surprisingly, Munc 18-1 EIEE mutants also form Lewy body like structures that contain a-synuclein (alpha-Syn). We reveal that Munc 18-1 binds alpha-Syn, and its EIEE mutants coaggregate alpha-Syn. Likewise, removal of endogenous Munc 18-1 increases the aggregative propensity of alpha-Syn(wT) and that of the Parkinson's disease-causing a-Syn(A30P) mutant, an effect rescued by Munc18-1(WT) expression, indicative of chaperone activity. Coexpression of the alpha-Syn(A30P) mutant with Munc 18-1 reduced the number of alpha-Syn(A30P) aggregates. Munc 18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc 18-1 and a perturbed chaperone activity for a-Syn leading to aggregation-induced neurodegeneration

    Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin.

    Get PDF
    Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane

    Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    Get PDF
    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution

    Profiling of free fatty acids using stable isotope tagging uncovers a role for saturated fatty acids in neuroexocytosis

    Get PDF
    The phospholipase-catalyzed release of free fatty acids (FFAs) from phospholipids is implicated in many critical biological processes such as neurotransmission, inflammation, and cancer. However, determining the individual change in FFAs generated during these processes has remained challenging due to the limitations of current methods, and has hampered our understanding of these key mediators. Here, we developed an “iTRAQ”-like method for profiling FFAs by stable isotope tagging (FFAST), based on the differential labeling of the carboxyl group and designed to resolve analytical variance, through a multiplexed assay in cells and subcellular fractions. With nanomolar sensitivity, this method revealed a spectrum of saturated FFAs elicited during stimulation of exocytosis that was identical in neurons and neurosecretory cells. Purified secretory vesicles also generated these FFAs when challenged with cytosol. Our multiplex method will be invaluable to assess the range of FFAs generated in other physiological and pathological settings

    ENA/VASP proteins regulate exocytosis by mediating myosin VI-dependent recruitment of secretory granules to the cortical actin network

    No full text
    In neurosecretory cells, myosin VI associated with secretory granules (SGs) mediates their activity-dependent recruitment to the cortical actin network and is necessary to sustain exocytosis. The mechanism by which myosin VI interacts with SGs is unknown. Using a myosin VI pull-down assay and mass spectrometry we identified Mena, a member of the ENA/VASP family, as a myosin VI binding partner in PC12 cells, and confirmed that Mena colocalized with myosin VI on SGs. Using a knock-sideways approach to inactivate the ENA/VASP family members by mitochondrial relocation, we revealed a concomitant redistribution of myosin VI. This was ensued by a reduction in the association of myosin VI with SGs, a decreased SG mobility and density in proximity to the plasma membrane as well as decreased evoked exocytosis. These data demonstrate that ENA/VASP proteins regulate SG exocytosis through modulating the activity of myosin VI

    Deacylation kinetic of <sup>N13</sup>GAP-43(C3S) at different doses of 2-BP.

    No full text
    <p><b>A</b>) Schematic representation of the experimental procedure used in <b>B</b>, <b>C</b> and <b>E</b>. The CHO-K1 cells expressing <sup>N13</sup>GAP-43(C3S)-YFP, 72 h after transfection, were treated at 20°C with 25, 50 or 150 µM 2-BP or DMSO (Control) in the presence of CHX and protein degradation inhibitors which were added 1 h before imaging and during all the experiments. The <sup>N13</sup>GAP-43(C3S) subcellular distribution was analyzed by live cell confocal microscopy. <b>B</b>) Representative images showing the effect of different doses of 2-BP or DMSO (vehicle, Control) on the TGN-membrane association of <sup>N13</sup>GAP-43(C3S)-YFP. The fluorescent signal from YFP (pseudocoloured gray) at 0, 5, 15 and 30 min after 2-BP or vehicle addition is shown. The insets show the expression of the TGN marker GalNAc-T-CFP (pseudocolored gray). Cell boundaries (white lines) are indicated. <b>C</b>) Quantification of the images shown in <b>B</b> (for details see Materials and methods). Curves were fitted to the exponential decay function for each data set, and data are expressed as means±SEM for a representative experiment from nine independent ones. <b>D</b>) The half-life for deacylation at each 2-BP dose calculated from the <b>C</b> data (n = 6). (*p<0.05; ***p<0.0001; compared to 25 µM). <b>E</b>) Representative images showing the effect of 50 µM 2-BP on the TGN-membrane association of GalNAc-T-YFP over time. The fluorescent signal from YFP (pseudocoloured gray) at 0, 5, 15 and 30 min after 2-BP addition is shown. Scale bars: 5 µm.</p
    corecore