71 research outputs found

    Prediction Of The Coefficient Of Friction In The Single Point Incremental Forming Of Truncated Cones From A Grade 2 Titanium Sheet

    Get PDF
    The aim of this paper is to analyze the effect of the process parameters on the coefficient of friction (COF) in the single-point incremental forming process. This investigation may be useful for further FEM analyses where the tool-workpiece contact must be set appropriately to obtain adequate results. The friction was analyzed between a solid tungsten carbide ⌀8 hemispherical ended tool with a radius of 4 mm and a grade 2 pure titanium sheet. As a lubricant, 10W40 engine oil was used. The experiment was of a central composite design and 20 runs in random order were carried out. The influence of input factors, namely spindle speed, tool feed and incremental step depth, was analyzed for the COF response. Two type of equations founded in the literature have been acquired to calculate COF values. An investigation of COF analysis was done for initial tool contact, the first tool full depth contact and stabilized forming region. Additionally, single components of the horizontal force (X-axis and Y-axis) were taken into account. Analysis of variance shows that there is no correlation between the input factors and the COF responses. However, the mean model fitted to the results obtained allows for the prediction of the COF by using the vertical force component and only one horizontal force component. The resulting mean value of the COF between the tool and the workpiece equals 0.4 for Eq. (1) initial contact, stabilized forming: Eq. (1) 0.656 and Eq. (2) 0.469

    Investigation of contact phenomena in turning using tools made of low-alloy high-speed steels

    Get PDF
    U ovom se radu daju rezultati ispitivanja raspodjele temperaturnog polja i trošenja alata tijekom tokarenja čelika C60. Provedena su ispitivanja otpornosti na abrazivno trošenje tokarskih noževa izrađenih od niskolegiranog brzoreznog čelika. Uzorci čelika su toplinski obrađeni i zatim podvrgnuti ionskom nitriranju, oblaganju TiN ili kompleksnoj obradi. Analiziran je utjecaj brzine rezanja na vrijednost osnovnih parametara karakterističnih za pojave u graničnoj površini alat-obradak, t.j. rezni omjer, faktor trenja i dužina zone dodira. Porast vrijednosti kuta nagiba dovodi do porasta vrijednosti faktora trenja. Nadalje, vrijednost faktora trenja se smanjuje kako raste debljina reznog sloja. Ispitivanja trajnosti rezne oštrice potvrđuju da je u definiranju radnih uvjeta alata, najvažnija otpornost na gubitak tvrdoće kod porasta temperature na temperaturama višim i nižim od temperature popuštanja.In this paper, the results of investigations of the temperature field distribution and tool wearing during C60 steel turning are presented. Abrasive wear resistance tests were carried out for cutters made of low-alloy high-speed steel. Steel samples were heat treated, and then were subjected to ion nitriding, TiN coating, or to complex treatment. The influence of cutting speed on the value of basic parameters characterising the phenomena in the tool-workpiece interface i.e., cutting ratio, friction coefficient, and length of contact zone, is analysed. An increase of the rake angle value causes an increase in the value of the friction coefficient. Furthermore, the value of the friction coefficient decreases as the thickness of the cut layer increases. Investigations of the durability of cutting edges confirm that to define the working conditions of the tool, resistance against hardness loss with increasing temperature at temperatures higher and lower than the tempering temperature is the most significant

    FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS

    Get PDF
    In this paper the sheet forming process of cylindrical drawpieces was sim-ulated based on the finite element method by the explicit approach in the pres-ence of contact conditions with isotropic and anisotropic friction. The ex-perimental and numerical results obtained in the Abaqus finite element (FE) based program are presented. The aim of the experimental study is to analyse material behaviour under deformation and in addition to use the results to verify numerical simulation results. It was found that, although, the anisotropy of resistance to friction affects the height of ears, the influence of the friction formulation is relatively small in comparison with material anisotropy. The study indicates that FE analysis with 3-node triangular shell element S3R elements ensures the best approximation of the numerical results to the real process when both material and friction anisotropy are taken into account

    Current Concepts for Cutting Metal-Based and Polymer-Based Composite Materials

    Get PDF
    Due to the variety of properties of the composites produced, determining the choice of the appropriate cutting technique is demanding. Therefore, it is necessary to know the problems associated with cutting operations, i.e., mechanical cutting (blanking), plasma cutting plasma, water jet cutting, abrasive water jet cutting, laser cutting and electrical discharge machining (EDM). The criterion for choosing the right cutting technique for a specific application depends not only on the expected cutting speed and material thickness, but it is also related to the physico-mechanical properties of the material being processed. In other words, the large variety of composite properties necessitates an individual approach determining the possibility of cutting a composite material with a specific method. This paper presents the achievements gained over the last ten years in the field of non-conventional cutting of metal-based and polymer-based composite materials. The greatest attention is paid to the methods of electrical discharge machining and ultrasonic cutting. The methods of high-energy cutting and water jet cutting are also considered and discussed. Although it is well-known that plasma cutting is not widely used in cutting composites, the authors also took into account this type of cutting treatment. The volume of each chapter depends on the dissemination of a given metal-based and polymer-based composite material cutting technique. For each cutting technique, the paper presents the phenomena that have a direct impact on the quality of the resulting surface and on the formation of the most important defects encountered. Finally, the identified current knowledge gaps are discussed.publishedVersio

    Friction modeling of Al-Mg alloy sheets based on multiple regression analysis and neural networks

    Get PDF
    This article reports a proposed approach to a frictional resistance description in sheet metal forming processes that enables the determination of the friction coefficient value under a wide range of friction conditions, without performing time-consuming experiments. The motivation for this proposal is the fact that there exists a considerable amount of factors that affect the friction coefficient value and as a result building analytical friction model for specified process conditions is practically impossible. In this proposed approach, a mathematical model of friction behaviour is created using multiple regression analysis and artificial neural networks. The regression analysis was performed using a subroutine in MATLAB programming code and STATISTICA Neural Networks was utilized to build an artificial neural networks model. The effect of different training strategies on the quality of neural networks was studied. As input variables for regression model and training of radial basis function networks, generalized regression neural networks and multilayer networks, the results of strip drawing friction test were utilized. Four kinds of Al-Mg alloy sheets were used as a test material.publishedVersio

    Development of Harvesting Machines for Willow Small-Sizes Plantations in East-Central Europe

    Get PDF
    The production of plant biomass in small farms within the Central and Eastern European countries requires the application of agricultural machines adjusted to the scale of production. In the article, new machines for small-sized plantations of energy crops have been presented. Furthermore, the results of strength analysis of three-point linkage mower frame are presented by finite element method. The advantage of the proposed solutions is their simple construction, which is connected with low production cost and simple machine operation. The energy-crop harvesting machines are especially intended for small biomass producers in East-Central Europe, and the purchase of professional machines is financially inaccessible. The proposed machines are mounted in front or at the back of a typical farm tractor and the chipping units are power-take-off driven. The numerical simulation was carried out using finite element method to study the structural strength of a mower frame. All machine designs proposed by the Rzeszow University of Technology are legally protected by patents and utility models. The presented agricultural solutions have been worked out by authors and a part of them is still being developed in cooperation with biomass producers

    Recent Developments and Future Challenges in Incremental Sheet Forming of Aluminium and Aluminium Alloy Sheets

    Get PDF
    Due to a favourable strength-to-density ratio, aluminium and its alloys are increasingly used in the automotive, aviation and space industries for the fabrication of skins and other structural elements. This article explores the opportunities for and limitations of using Single- and Two Point Incremental Sheet Forming techniques to form sheets from aluminium and its alloys. Incremental Sheet Forming (ISF) methods are designed to increase the efficiency of processing in low- and medium-batch production because (i) it does not require the production of a matrix and (ii) the forming time is much higher than in conventional methods of sheet metal forming. The tool in the form of a rotating mandrel gradually sinks into the sheet, thus leading to an increase in the degree of deformation of the material. This article provides an overview of the published results of research on the influence of the parameters of the ISF process (feed rate, tool rotational speed, step size), tool path strategy, friction conditions and process temperature on the formability and surface quality of the workpieces. This study summarises the latest development trends in experimental research on, and computer simulation using, the finite element method of ISF processes conducted in cold forming conditions and at elevated temperature. Possible directions for further research are also identified

    Emerging trends in single point incremental sheet forming of lightweight metals

    Get PDF
    Lightweight materials, such as titanium alloys, magnesium alloys, and aluminium alloys, are characterised by unusual combinations of high strength, corrosion resistance, and low weight. However, some of the grades of these alloys exhibit poor formability at room temperature, which limits their application in sheet metal-forming processes. Lightweight materials are used extensively in the automobile and aerospace industries, leading to increasing demands for advanced forming technologies. This article presents a brief overview of state-of-the-art methods of incremental sheet forming (ISF) for lightweight materials with a special emphasis on the research published in 2015–2021. First, a review of the incremental forming method is provided. Next, the effect of the process conditions (i.e., forming tool, forming path, forming parameters) on the surface finish of drawpieces, geometric accuracy, and process formability of the sheet metals in conventional ISF and thermally-assisted ISF variants are considered. Special attention is given to a review of the effects of contact conditions between the tool and sheet metal on material deformation. The previous publications related to emerging incremental forming technologies, i.e., laser-assisted ISF, water jet ISF, electrically-assisted ISF and ultrasonic-assisted ISF, are also reviewed. The paper seeks to guide and inspire researchers by identifying the current development trends of the valuable contributions made in the field of SPIF of lightweight metallic materials

    Current Concepts for Cutting Metal-Based and Polymer-Based Composite Materials

    No full text
    Due to the variety of properties of the composites produced, determining the choice of the appropriate cutting technique is demanding. Therefore, it is necessary to know the problems associated with cutting operations, i.e., mechanical cutting (blanking), plasma cutting plasma, water jet cutting, abrasive water jet cutting, laser cutting and electrical discharge machining (EDM). The criterion for choosing the right cutting technique for a specific application depends not only on the expected cutting speed and material thickness, but it is also related to the physico-mechanical properties of the material being processed. In other words, the large variety of composite properties necessitates an individual approach determining the possibility of cutting a composite material with a specific method. This paper presents the achievements gained over the last ten years in the field of non-conventional cutting of metal-based and polymer-based composite materials. The greatest attention is paid to the methods of electrical discharge machining and ultrasonic cutting. The methods of high-energy cutting and water jet cutting are also considered and discussed. Although it is well-known that plasma cutting is not widely used in cutting composites, the authors also took into account this type of cutting treatment. The volume of each chapter depends on the dissemination of a given metal-based and polymer-based composite material cutting technique. For each cutting technique, the paper presents the phenomena that have a direct impact on the quality of the resulting surface and on the formation of the most important defects encountered. Finally, the identified current knowledge gaps are discussed

    Experimental Analysis of Frictional Performance of EN AW-2024-T3 Alclad Aluminium Alloy Sheet Metals in Sheet Metal Forming

    No full text
    Friction occurring in the area of contact between the sheet metal and the tool in sheet metal forming is one of the factors determining the quality of the surface of the drawpiece and the formability of the workpiece. Knowledge of the friction conditions allows the optimal forming conditions to be determined in terms of lubrication and applied pressures. The article presents the results of experimental studies of friction in EN AW-2024-T3 Alclad sheets using a special device simulating the sheet–tool contact in the blank-holder area during SMF. The friction tests were carried out at various pressures, under dry friction, and with the use of typical oils with a wide range of viscosity. The effect of the friction process parameters on the COF and surface roughness parameters Rsk and Rku was analysed using analysis of variance. The model F-values imply that the regression models for all the output parameters were significant. A monotonic decrease in the COF with an increase in the mean contact pressure and lubricant viscosity was observed for both dry and lubricated conditions. DELVAC 1340 engine oil with the highest viscosity significantly lowered the COF. The lubrication efficiency with LAN46 machine oil and LVH22 hydraulic oil showed an upward trend with an increasing mean contact pressure. In general, friction reduces the value of average roughness, Ra, and skewness, Rsk. Meanwhile, friction under contact pressures in the analysed range (4.4–11.7 MPa) causes an increase in kurtosis, Rku
    corecore