69 research outputs found

    Genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP) and its association with Physiological mechanisms controlling Body Mass Index (BMI)

    Get PDF
    Taste sensitivity to the bitter compound 6-n-propylthiouracil (PROP) is considered a marker for individual differences in taste perception that may influence food preferences and eating behavior, and thereby energy metabolism. This review describes genetic factors that may contribute to PROP sensitivity including: (1) the variants of the TAS2R38 bitter receptor with their different affinities for the stimulus; (2) the gene that controls the gustin protein that acts as a salivary trophic factor for fungiform taste papillae; and (3) other specific salivary proteins that could be involved in facilitating the binding of the PROP molecule with its receptor. In addition, we speculate on the influence of taste sensitivity on energy metabolism, possibly via modulation of the endocannabinoid system, and its possible role in regulating body composition homeostasis

    The Implications of Taste and Olfaction in Nutrition and Health

    Get PDF
    Taste and olfaction are sensory modalities that act synergistically to orchestrate the behaviors essential for survival, such as interactions with the environment, nutrient-rich food identification, and the avoidance of noxious substances [...]

    A polymorphism in the human gene encoding OBPIIa affects the perceived intensity of smelled odors

    Get PDF
    Among the factors that contribute to the physiological variability of the olfactory function of individuals, an important role seems to be played by the OBPs present in the mucus that bathes the ciliated terminals of the olfactory sensory neurons, facilitating the access of odorants to the olfactory receptors. It was recently highlighted that the rs2590498 polymorphism in the odor binding-protein (OBPIIa) gene it is associated with the olfactory threshold in healthy individuals. Aim of this study was to evaluate: 1) the presence of a relationship between the threshold olfactory performance of healthy subjects and the intensity with which they perceive the smelled odorants, and 2) the effect of the rs2590498 polymorphism of the OBPIIa gene on perceived intensity. We found a positive correlation between threshold olfactory and perceived intensity, and that AA homozygous subjects reported a perceived intensity higher than heterozygous and GG homozygous subjects. By showing a positive effect of the rs2590498 polymorphism of the hOBPIIa gene on the intensity perceived, these results suggest that it allows a larger number of molecules in an odorous mixture to reach the olfactory receptors

    Gustatory Sensitivity and Food Acceptance in Two Phylogenetically Closely Related Papilionid Species: Papilio hospiton and Papilio machaon.

    Get PDF
    In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range

    Marked increase in PROP taste responsiveness following oral supplementation with selected salivary proteins or their related free amino acids

    Get PDF
    The genetic predisposition to taste 6-n-propylthiouracil (PROP) varies among individuals and is associated with salivary levels of Ps-1 and II-2 peptides, belonging to the basic proline-rich protein family (bPRP). We evaluated the role of these proteins and free amino acids that selectively interact with the PROP molecule, in modulating bitter taste responsiveness. Subjects were classified by their PROP taster status based on ratings of perceived taste intensity for PROP and NaCl solutions. Quantitative and qualitative determinations of Ps-1 and II-2 proteins in unstimulated saliva were performed by HPLC-ESI-MS analysis. Subjects rated PROP bitterness after supplementation with Ps-1 and II-2, and two amino acids (L-Arg and L-Lys) whose interaction with PROP was demonstrated by (1)H-NMR spectroscopy. ANOVA showed that salivary levels of II-2 and Ps-1 proteins were higher in unstimulated saliva of PROP super-tasters and medium tasters than in non-tasters. Supplementation of Ps-1 protein in individuals lacking it in saliva enhanced their PROP bitter taste responsiveness, and this effect was specific to the non-taster group.(1)H-NMR results showed that the interaction between PROP and L-Arg is stronger than that involving L-Lys, and taste experiments confirmed that oral supplementation with these two amino acids increased PROP bitterness intensity, more for L-Arg than for L-Lys. These data suggest that Ps-1 protein facilitates PROP bitter taste perception and identifies a role for free L-Arg and L-Lys in PROP tasting

    The gustin (CA6) gene polymorphism, rs2274333 (A/G), as a mechanistic link between PROP tasting and fungiform taste papilla density and maintenance

    Get PDF
    Taste sensitivity to PROP varies greatly among individuals and is associated with polymorphisms in the bitter receptor gene TAS2R38, and with differences in fungiform papilla density on the anterior tongue surface. Recently we showed that the PROP non-taster phenotype is strongly associated with the G variant of polymorphism rs2274333 (A/G) of the gene that controls the salivary trophic factor, gustin. The aims of this study were 1) to investigate the role of gustin gene polymorphism rs2274333 (A/G), in PROP sensitivity and fungiform papilla density and morphology, and 2) to investigate the effect of this gustin gene polymorphism on cell proliferation and metabolic activity. Sixty-four subjects were genotyped for both genes by PCR techniques, their PROP sensitivity was assessed by scaling and threshold methods, and their fungiform papilla density, diameter and morphology were determined. In vitro experiments examined cell proliferation and metabolic activity, following treatment with saliva of individuals with and without the gustin gene mutation, and with isolated protein, in the two iso-forms. Gustin and TAS2R38 genotypes were associated with PROP threshold (p=0.0001 and p=0.0042), but bitterness intensity was mostly determined by TAS2R38 genotypes (p<0.000001). Fungiform papillae densities were associated with both genotypes (p<0.014) (with a stronger effect for gustin; p=0.0006), but papilla morphology was a function of gustin alone (p<0.0012). Treatment of isolated cells with saliva from individuals with the AA form of gustin or direct application of the active iso-form of gustin protein increased cell proliferation and metabolic activity (p<0.0135). These novel findings suggest that the rs2274333 polymorphism of the gustin gene affects PROP sensitivity by acting on fungiform papilla development and maintenance, and could provide the first mechanistic explanation for why PROP super-tasters are more responsive to a broad range of oral stimul

    An automated system for the objective evaluation of human gustatory sensitivity using tongue biopotential recordings

    Get PDF
    The goal of this work is to develop an automatic system for the evaluation of the gustatory sensitivity of patients using an electrophysiological recording of the response of bud cells to taste stimuli. In particular, the study aims to evaluate the effectiveness and limitations of supervised classifiers in the discrimination between subjects belonging to the three 6-n-pro-pylthiouracil (PROP) taster categories (supertasters, medium tasters, and non-tasters), exploiting features extracted from electrophysiological recordings of the tongue. Thirty-nine subjects (equally divided into the three PROP status classes by standard non-objective scaling methods) underwent a non-invasive, differential, biopotential recording of their tongues during stimulation with PROP by using a custom-made, flexible, silver electrode. Two different classifiers were trained to recognize up to seven different features extracted from the recorded depolarization signal. The classification results indicate that the identified set of features allows to distinguish between PROP tasters and non-tasters (average accuracy of 80% ± 18% and up to 94% ± 15% when only supertasters and non-tasters are considered), but medium tasters were difficult to identify. However, these apparent classification errors are related to uncertainty in the labeling procedures, which are based on non-objective tests, in which the subjects provided borderline evaluations. Thus, using the proposed method, it is possible, for the first time, to automatically achieve objective PROP taster status identification with high accuracy. The simplicity of the recording technique allows for easy reproduction of the experimental setting; thus the technique can be used in future studies to evaluate other gustatory stimuli. The proposed approach represents the first objective and automatic method to directly measure human gustatory responses and a milestone for physiological taste studies, with applications ranging from basic science to food tasting evaluations

    Changes of taste, smell and eating behavior in patients undergoing bariatric surgery: Associations with prop phenotypes and polymorphisms in the odorant-binding protein OBPIIa and CD36 receptor genes

    Get PDF
    Bariatric surgery is the most effective long-term treatment for severe obesity and related comorbidities. Although patients who underwent bariatric surgery report changes of taste and smell perception, results from sensory studies are discrepant and limited. Here, we assessed taste and smell functions in 51 patients before, one month, and six months after undergoing bariatric surgery. We used taste strip tests to assess gustatory function (including sweetness, saltiness, sourness, uma-miness, bitterness and oleic acid, a fatty stimulus), the “Sniffin’ Sticks” test to assess olfactory identification and the 3-Factor Eating Questionnaire to assess eating behavior. We also explored associations between these phenotypes and flavor-related genes. Results showed an overall improvement in taste function (including increased sensitivity to oleic acid and the bitterness of 6-n-propylthiou-racil (PROP)) and in olfactory function (which could be related to the increase in PROP and oleic acid sensitivity), an increase in cognitive restraint, and a decrease in disinhibition and hunger after bariatric surgery. These findings indicate that bariatric surgery can have a positive impact on olfactory and gustatory functions and eating behavior (with an important role of genetic factors, such PROP tasting), which in turn might contribute to the success of the intervention

    Dose-dependent effects of L-Arginine on PROP bitterness intensity and latency and characteristics of the chemical interaction between PROP and L-Arginine

    Get PDF
    Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the -NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a 'carrier' of various bitter molecules in saliva

    Dose-Dependent Effects of L-Arginine on PROP Bitterness Intensity and Latency and Characteristics of the Chemical Interaction between PROP and L-Arginine

    Get PDF
    Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the -NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP\u2022ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a 'carrier' of various bitter molecules in saliva
    • …
    corecore